【題目】如圖,直線y=x+a與x軸交于點A(4,0),與y軸交于點B,拋物線y=x2+bx+c經(jīng)過點A,B.點M(m,0)為x軸上一動點,過點M且垂直于x軸的直線分別交直線AB及拋物線于點P,N.
(1)填空:點B的坐標為 ,拋物線的解析式為 ;
(2)當點M在線段OA上運動時(不與點O,A重合),
①當m為何值時,線段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時m的值;
(3)若拋物線上有且只有三個點N到直線AB的距離是h,請直接寫出此時由點O,B,N,P構(gòu)成的四邊形的面積.
【答案】(1)(0,﹣3),y=x2﹣x﹣3;(2)①是3,②3或;(3)6或6+6或6﹣6.
【解析】
(1)把點A的坐標代入直線表達式y=x+a,求出a=-3,把點A、B的坐標代入二次函數(shù)表達式,即可求值.
(2) ①點P(m,m﹣3),點N(m,m2﹣m﹣3,求出PN值的表達式,即可求解,
②分∠BNP=90°,∠NBP=90°,∠BPN=90°三種情況,分別求解.
(3)若拋物線上只有三個點N到直線AD的距離是h,則只能出現(xiàn):在AB直線下方拋物線與過點N的直線與拋物線有一個交點N,在直線AB上方的交點有兩個,分別求解即可.
解:(1)把點A坐標代入直線表達式y=x+a,
解得:a=﹣3,則:直線表達式為:y═x﹣3,令x=0,則:y=﹣3,
則點B坐標為(0,﹣3),
將點B的坐標代入二次函數(shù)表達式得:c=﹣3,
把點A的坐標代入二次函數(shù)表達式得:×16+4b﹣3=0,
解得:b=﹣,
故拋物線的解析式為:y=x2﹣x﹣3,
(2)①∵M(m,0)在線段OA上,且MN⊥x軸,
∴點P(m,m﹣3),N(m,m2﹣m﹣3),
∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,
∵a=﹣<0,
∴拋物線開口向下,
∴當m=2時,PN有最大值是3,
②當∠BNP=90°時,點N的縱坐標為﹣3,
把y=﹣3代入拋物線的表達式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),
∴m=3;
當∠NBP=90°時,∵BN⊥AB,兩直線垂直,其k值相乘為﹣1,
設:直線BN的表達式為:y=﹣x+n,
把點B的坐標代入上式,解得:n=﹣3,則:直線BN的表達式為:y=﹣x﹣3,
將上式與拋物線的表達式聯(lián)立并解得:m=或0(舍去m=0),
當∠BPN=90°時,不合題意舍去,
故:使△BPN為直角三角形時m的值為3或;
(3)∵OA=4,OB=3,
在Rt△AOB中,tanα=,則:cosα=,sinα=,
∵PM∥y軸,
∴∠BPN=∠ABO=α,
若拋物線上有且只有三個點N到直線AB的距離是h,
則只能出現(xiàn):在AB直線下方拋物線與過點N的直線與拋物線有一個交點N,在直線AB上方的交點有兩個.
當過點N的直線與拋物線有一個交點N,
點M的坐標為(m,0),設:點N坐標為:(m,n),
則:n=m2﹣m﹣3,過點N作AB的平行線,
則點N所在的直線表達式為:y=x+b,將點N坐標代入,
解得:過N點直線表達式為:y=x+(n﹣m),
將拋物線的表達式與上式聯(lián)立并整理得:3x2﹣12x﹣12+3m﹣4n=0,
△=144﹣3×4×(﹣12+3m﹣4n)=0,
將n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,
解得:m=2,則點N的坐標為(2,﹣),
則:點P坐標為(2,﹣),
則:PN=3,
∵OB=3,PN∥OB,
∴四邊形OBNP為平行四邊形,則點O到直線AB的距離等于點N到直線AB的距離,
即:過點O與AB平行的直線與拋物線的交點為另外兩個N點,即:N′、N″,
直線ON的表達式為:y=x,將該表達式與二次函數(shù)表達式聯(lián)立并整理得:
x2﹣4x﹣4=0,解得:x=2±2,
則點N′、N″的橫坐標分別為2+2,2﹣2,
作NH⊥AB交直線AB于點H,
則h=NH=NPsinα=,
作N′P′⊥x軸,交x軸于點P′,則:∠ON′P′=α,ON′==(2+2),
S四邊形OBPN=BPh==6,
則:S四邊形OBP′N′=S△OP′N′+S△OBP′=6+,
同理:S四邊形OBN″P″=﹣6,
故:點O,B,N,P構(gòu)成的四邊形的面積為:6或6+6或6﹣6.
科目:初中數(shù)學 來源: 題型:
【題目】已知A,C,B三地依次在一條直線上,甲騎摩托車直接從C地前往B地;乙開車以80km/h的速度從A地前往B地,在C地辦理事務耽誤1 h后,繼續(xù)前往B地.已知兩人同時出發(fā)且速度不變,又恰好同時到達B地.設出發(fā)x h后甲乙兩人離C地的距離分別為y1 kmy2 km,圖①中線段OD表示y1與x的函數(shù)圖像,線段EF表示y2與x函數(shù)的部分圖像.
(1)甲的速度為 km/h,點E坐標為 ;
(2)求線段EF所表示的y2與x之間的函數(shù)表達式;
(3)設兩人相距S千米,在圖②所給的直角坐標系中畫出S關于x的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx經(jīng)過點A(4,0),點B是其頂點,∠AOB=45°,OC⊥OB交此拋物線于點C,動直線y=kx與拋物線交于點D,分別過點B、C作BE、CF垂直動直線y=kx于點E、F.
(1)求此拋物線的解析式;
(2)當直線y=kx把∠AOC分成的兩個角的度數(shù)之比恰好為1:2時,求k的值;
(3)BE+CF是否存在最大值?若存在,請直接寫出此最大值和此時k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C.(0,0)
(1)將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1,畫出△A1B1C1,并直接寫出點A1的坐標;
(2)△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)如果△A2B2O,通過旋轉(zhuǎn)可以得到△A1B1C1,請直接寫出旋轉(zhuǎn)中心P的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點的坐標為( 。
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是矩形ABCD的一條對角線,E是AC中點,連接BE,再分別以A,D為圓心,大于的長為半徑作弧,兩弧相交于點F,連接EF交AD于點G.若AB=3,BC=4,則四邊形ABEG的周長為( )
A. 8B. 8.5C. 9D. 9.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為r,則S關于t的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生對博鰲論壇會的了解情況,某中學隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了______名學生;扇形統(tǒng)計圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1600名學生,請你估計對博鰲論壇會的了解情況為“非常了解”的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,點F是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= 的圖象與BC邊交于點E.
(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com