【題目】如圖,在平面直角坐標(biāo)系中△ABC 進(jìn)行循環(huán)往復(fù)的軸對稱或中心對稱變換,若原來點 A 坐標(biāo)是(a,b),則經(jīng)過第 2012 次變換后所得的 A 點坐標(biāo)是( )

A. (a,b) B. (a,﹣b) C. (﹣a,b) D. (﹣a,﹣b)

【答案】C

【解析】

觀察圖形不難發(fā)現(xiàn),每三次變換為一個循環(huán)組循環(huán),用2012除以3,根據(jù)余數(shù)的情況確定最后點A所在的象限,然后根據(jù)關(guān)于坐標(biāo)軸對稱的點的變化規(guī)律解答.

由圖可知,經(jīng)過3次對稱變換后△ABC又回到原來位置,

2012÷3=6702

∴第2012次變換后所得的A點與第2次變換后的點A的位置相同,

即與原圖形關(guān)于y軸對稱,

∵點A坐標(biāo)是(a,b),

∴第2012次變換后所得的A點坐標(biāo)(-a,b).

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6/件,該產(chǎn)品在正式投放市場前通過代銷點進(jìn)行了為期一個月(30)的試銷售,售價為8/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷售量y()與銷售時間x()之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時間每增加1天,日銷售量減少5件.

(1)24天的日銷售量是 件,日銷售利潤是 元;

(2)yx之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售AB兩種型號的新能源汽車.上周售出1A型車和3B型車,兩種車型的銷售總額為96萬元;本周銷售2A型車和1B型車,兩種車型的銷售總額為62萬元,已知兩種型號汽車銷售價格始終不變.

1)求A、B兩種車型的銷售單價分別是多少?

2)第三周計劃售出A、B兩種型號的車共5輛,若銷售總額不少于100萬元,則B型車至少要售出多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1kx+b與反比例函數(shù)y2的圖象交于A2,3),B6n)兩點,與x軸、y軸分別交于C,D兩點.

1)求一次函數(shù)與反比例函數(shù)的解析式.

2)求當(dāng)x為何值時,y10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動項目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計圖(2)補(bǔ)充完整;

(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,BAADDC,點ECB延長線上,BEAD,連接AC、AE

求證:AEAC

ABAC, FBC的中點,試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣13).

1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點C的對應(yīng)點C的坐標(biāo)為(4,﹣1),畫出△A1B1C1并寫出頂點AB對應(yīng)點A1,B1的坐標(biāo);

2)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A2B2C2,畫出△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦,OD⊥AC于點D,過點A作⊙O的切線AP,AP與OD的延長線交于點P,連接PC、BC.

1猜想:線段OD與BC有何數(shù)量和位置關(guān)系,并證明你的結(jié)論.

2求證:PC是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于為直徑,

過點于點的延長線于點,連接于點

求證: 的切線;

若點的中點,求證:

,求的長.

查看答案和解析>>

同步練習(xí)冊答案