【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y=(x>0)相交于P(1,m).
(1)求k的值;
(2)若點Q與點P關(guān)于y=x成軸對稱,則點Q的坐標為Q( );
(3)若過P、Q兩點的拋物線與y軸的交點為N(0, ),求該拋物線的解析式,并求出拋物線的對稱軸方程.
【答案】(1)k=1;(2)(2,1);(3)拋物線解析式為:y=﹣x2+x+,對稱軸方程為x=.
【解析】試題分析:(1)直接將點代入反比例函數(shù)解析式得出的值,進而把點代入一次函數(shù)解析式得出答案;
(2)利用全等三角形的判定和性質(zhì)得出 即可得出點坐標;
(3)直接利用待定系數(shù)法求出二次函數(shù)解析式進而得出答案.
試題解析: (1)把P(1,m)代入 得m=2,
∴P(1,2)
把(1,2)代入y=kx+1,得k=1;
(2)如圖所示:過點P作PA⊥y軸于點A,過點Q作QB⊥x軸于點B,
∵點Q與點P關(guān)于y=x成軸對稱,OP=OQ,
∴∠AOP=∠BOQ,
在△APO和△BQO中,
∴AO=OB=2,AP=QB=1,
∴Q點的坐標為:(2,1).
故答案為:(2,1);
(3)設(shè)拋物線的解析式為 得:
解得
故拋物線解析式為:
則對稱軸方程為
科目:初中數(shù)學 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC繞點C順時針旋轉(zhuǎn)得到△DEC,使點A的對應(yīng)點D恰好落在邊AB上,點B的對應(yīng)點為E,連接BE,以下四個結(jié)論:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC,其中一定正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進行鍛造,8分鐘溫度降為600℃;煅燒時溫度y(℃)與時間x(min)成一次函數(shù)關(guān)系;鍛造時溫度y(℃)與時間x(min)成反比例函數(shù)關(guān)系;該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當材料溫度低于480℃時,須停止操作,那么鍛造的操作時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一枚質(zhì)地均勻的正二十面體形狀的骰子,其中的1個面標有“1”,2個面標有“2”, 3個面標有“3”,4個面標有“4”,5個面標有“5”,其余的面標有“6”.將這枚骰子擲出后:
(1)數(shù)字幾朝上的概率最?
(2)奇數(shù)面朝上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線m∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線m于點E,垂足為點F,連接CD,BE.
(1)求證:CE=AD;
(2)當點D是AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)當∠A的大小滿足什么條件時,四邊形BECD是正方形?(不需要證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設(shè)計的“作矩形”的尺規(guī)作圖過程,已知:
求作:矩形
作法:如圖,
①作線段的垂直平分線角交于點;
②連接并延長,在延長線上截取
③連接
所以四邊形即為所求作的矩形
根據(jù)小東設(shè)計的尺規(guī)作圖過程
(1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)
(2)完成下邊的證明:
證明: ,,
四邊形是平行四邊形( )(填推理的依據(jù))
四邊形是矩形( )(填推理的依據(jù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com