【題目】已知方程x2+mx+3=0的一個根是1,則它的另一個根是  , m的值是

【答案】3;-4
【解析】設(shè)方程的另一個解是a,則1+a=﹣m,1×a=3,
解得:m=﹣4,a=3.
故答案是:3,﹣4.
【考點精析】解答此題的關(guān)鍵在于理解根與系數(shù)的關(guān)系的相關(guān)知識,掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列各組數(shù)中,能作為一個三角形三邊邊長的是( 。

A. 1,1,2 B. 1,2,4 C. 2,3,4 D. 2,3,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,甲、乙兩家商店以同樣價格銷售相同的商品,兩家優(yōu)惠方案分別為:甲店一次性購物中超過200元后的價格部分打七折;乙店一次性購物中超過500元后的價格部分打五折,設(shè)商品原價為x元(x≥0),購物應付金額為y元.
(1)求在甲商店購物時y與x之間的函數(shù)關(guān)系;
(2)兩種購物方式對應的函數(shù)圖象如圖所示,求交點C的坐標;
(3)根據(jù)圖象,請直接寫出“五一”期間選擇哪家商店購物更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是(

A.線段B.等邊三角形C.正方形D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD的邊長AB=8,AD=4,將矩形紙片沿EF折疊,使點A與點C重合,折疊后在某一面著色(如圖),則著色部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形正方形,點,將正方形時針旋轉(zhuǎn),得到正方形此時點,連接( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在長方形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D做勻速運動,那么△ABP的面積S與點P運動的路程x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作與證明:

如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷線段MD與MN的關(guān)系,得出結(jié)論;
結(jié)論:DM、MN的關(guān)系是:;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C旋轉(zhuǎn)180°,其他條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案