【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是( )
A.70°
B.65°
C.60°
D.55°
【答案】B
【解析】解:∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
由旋轉(zhuǎn)的性質(zhì)得∠B=∠A′B′C=65°.
故選:B.
根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A′B′C,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠B=∠A′B′C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,折線段AOB將面積為S的⊙O分成兩個扇形,大扇形、小扇形的面積分別為S1、S2 , 若 =0.618,則稱分成的小扇形為“黃金扇形”.生活中的折扇(如圖2)大致是“黃金扇形”,則“黃金扇形”的圓心角約為°.(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小商場以每件20元的價格購進一種服裝,先試銷一周,試銷期間每天的銷量(件)與每件的銷售價x(元/件)如下表:
x(元/件) | 38 | 36 | 34 | 32 | 30 | 28 | 26 |
t(件) | 4 | 8 | 12 | 16 | 20 | 24 | 28 |
假定試銷中每天的銷售量t(件)與銷售價x(元/件)之間滿足一次函數(shù).
(1)試求t與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓且不考慮其它因素的條件下,每件服裝的銷售定價為多少時,該小商場銷售這種服裝每天獲得的毛利潤最大?每天的最大毛利潤是多少?(注:每件服裝銷售的毛利潤=每件服裝的銷售價﹣每件服裝的進貨價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+m的圖象與x軸和y軸分別交于點A和點B,與正比例函數(shù)圖象交于點P(2,n).
(1)求m和n的值;
(2)求△POB的面積;
(3)在直線OP上是否存在異與點P的另一點C,使得△OBC與△OBP的面積相等?若存在,請求出C點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利過程.下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s和t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標,求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,、的垂直平分線相交于三角形內(nèi)一點,下列結(jié)論中,錯誤的是( )
A. 點在的垂直平分線上
B. 、、都是等腰三角形
C.
D. 點到、、的距離相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,,,,給出下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ①②③ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com