【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結OE.過點C作CF∥BD交線段OE的延長線于點F,連結DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)根據兩直線平行,內錯角相等可得∠ODE=∠FCE,根據線段中點的定義可得CE=DE,然后利用“角邊角”證明△ODE和△FCE全等;
(2)根據全等三角形對應邊相等可得OD=FC,再根據一組對邊平行且相等的四邊形是平行四邊形判斷出四邊形ODFC是平行四邊形,根據矩形的對角線互相平分且相等可得OC=OD,然后根據鄰邊相等的平行四邊形是菱形證明即可.
試題解析:(1)∵CF∥BD
∴∠DOE=∠CFE,
∵E是CD的中點,
∴CE=DE
在△ODE和△FCE中,
,
∴△ODE≌△FCE(ASA)
∴OD=CF.
(2)由(1)知OD=CF ,
∵CF∥BD ,
∴四邊形ODFC是平行四邊形
在矩形ABCD中,OC=OD,
∴四邊形ODFC是菱形.
科目:初中數學 來源: 題型:
【題目】課題小組從某市20000名九年級男生中,隨機抽取了1000名進行50米跑測試,并根據測試結果繪制了如下尚不完整的統(tǒng)計圖表.
等級 | 人數/名 |
優(yōu)秀 | a |
良好 | b |
及格 | 150 |
不及格 | 50 |
解答下列問題:
(1)a等于多少?,b等于多少?
(2)補全條形統(tǒng)計圖;
(3)試估計這20000名九年級男生中50米跑達到良好和優(yōu)秀等級的總人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=80°,求∠BOD的度數;
(2)若∠EOC=∠EOD,求∠BOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學習小組做摸球實驗.將球攪勻后從中隨機摸出一個球,記下顏色,再把它放回袋中,不斷重復,下表是活動進行中記下的一組數據
摸球的次數 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請你估計,當n很大時,摸到白球的頻率將會接近 (精確到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)試估算口袋中黑、白兩種顏色的球有多少只.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】企業(yè)舉行“愛心一日捐”活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結合圖表中的信息解答下列問題:
(1)宣傳小組抽取的捐款人數為_____人,請補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,求100元所對應扇形的圓心角的度數;
(3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y= x+b的圖象與反比例函數y= (x<0)的圖象交于點A(﹣1,2)和點B,點C在y軸上.
(1)當△ABC的周長最小時,求點C的坐標;
(2)當 x+b< 時,請直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】網癮低齡化問題已經引起社會各界的高度關注,有關部門在全國范圍內對12﹣35歲的網癮人群進行了簡單的隨機抽樣調查,繪制出以下兩幅統(tǒng)計圖.
請根據圖中的信息,回答下列問題:
(1)這次抽樣調查中共調查了人;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中18﹣23歲部分的圓心角的度數是;
(4)據報道,目前我國12﹣35歲網癮人數約為2000萬,請估計其中12﹣23歲的人數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com