【題目】如圖,已知點(diǎn)D為OB上的一點(diǎn),按下列要求進(jìn)行尺規(guī)作圖(保留作圖痕跡),并回答問(wèn)題.
(1)作∠AOB的平分線(xiàn)OC,在OC上取一點(diǎn)P使得OP=a;
(2)過(guò)點(diǎn)P作OA邊上的高;
(3)在邊OA上取一點(diǎn)E,使得PE=PD,請(qǐng)寫(xiě)出∠OEP與∠ODP的數(shù)量關(guān)系.
【答案】見(jiàn)解析
【解析】
(1)以點(diǎn)O為圓心,以任意長(zhǎng)為半徑畫(huà)弧與∠AOB的兩邊分別相交,再以?xún)山稽c(diǎn)為圓心,以大于兩交點(diǎn)之間的距離的一半為半徑畫(huà)弧,相交于一點(diǎn),過(guò)這一點(diǎn)與O作射線(xiàn)OC即可;在OC上取一點(diǎn)P,使得OP=a;
(2)一點(diǎn)P為原心,任意長(zhǎng)半徑與OA相交于兩點(diǎn),在以該兩點(diǎn)為畫(huà)弧,兩弧交于一點(diǎn),鏈接改點(diǎn)與點(diǎn)P,即為所求
(3)以O為圓心,以OD為半徑作弧,交OA于E2,連接PE2,作PM⊥OA于M,PN⊥OB于N,根據(jù)角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等可得PM=PN,利用HL證明△E2PM≌△DPN,得出∠OE2P=∠ODP,再根據(jù)平角的定義即可求解.
解:(1)如圖,OC即為所求;如圖,OP=a;
(2) 如圖所示.
(3)∠OEP=∠ODP或∠OEP+∠ODP=180°.
理由是:以O為圓心,以OD為半徑作弧,交OA于E2,連接PE2,作PM⊥OA于M,
PN⊥OB于N,則PM=PN.
在△E2PM和△DPN中,
∴△E2PM≌△DPN(HL),
∴∠OE2P=∠ODP;
以P為圓心,以PD為半徑作弧,交OA于另一點(diǎn)E1,連接PE1,
則此點(diǎn)E1也符合條件PD=PE1,
∵PE2=PE1=PD,
∴∠PE2E1=∠PE1E2,
∵∠OE1P+∠E2E1P=180°,
∵∠OE2P=∠ODP,
∴∠OE1P+∠ODP=180°,
∴∠OEP與∠ODP所有可能的數(shù)量關(guān)系是:∠OEP=∠ODP或∠OEP+∠ODP=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知∠BAC=∠EAD=90o.
(1)判斷∠BAE與∠CAD的大小關(guān)系,并說(shuō)明理由.
(2)當(dāng)∠EAC=60o時(shí),求∠BAD的大小.
(3)探究∠EAC與∠BAD的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)果,不要求說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC≌△ADE,線(xiàn)段BC的延長(zhǎng)線(xiàn)過(guò)點(diǎn)E,與線(xiàn)段AD交于點(diǎn)F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為直線(xiàn)AB上一點(diǎn),∠AOC=48°,OD平分∠AOC,OE⊥OD交于點(diǎn)O.
(1)求出∠BOD的度數(shù);
(2)試用計(jì)算說(shuō)明∠COE=∠BOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為△ABC外一點(diǎn),DC與AB交于點(diǎn)O,且∠BDC=∠BAC.
(1)求證:∠ABD=∠ACD;
(2)過(guò)點(diǎn)A作AM⊥CD于M,求證:BD+DM=CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)E從D點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng),假設(shè)移動(dòng)時(shí)間為t秒.
(1)試說(shuō)明:AD∥BC;
(2)在移動(dòng)過(guò)程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究這樣的情況會(huì)出現(xiàn)幾次?并分別求出此時(shí)的移動(dòng)時(shí)間t和G點(diǎn)的移動(dòng)距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C,D四點(diǎn)在同一條直線(xiàn)上,點(diǎn)C是線(xiàn)段AB的中點(diǎn),點(diǎn)D在線(xiàn)段AB上.
(1)如圖1,若AB=12,BD=BC,求線(xiàn)段CD的長(zhǎng)度;
(2)如圖2,點(diǎn)E是線(xiàn)段AB上一點(diǎn),且AE=2BE,當(dāng)3AD=2BD時(shí),探究線(xiàn)段CD與CE之間的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)上部分點(diǎn)坐標(biāo)如表所示,下列說(shuō)法錯(cuò)誤的是( )
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -6 | 0 | 4 | 6 | 6 | … |
A. 拋物線(xiàn)與y軸的交點(diǎn)為(0,6) B. 拋物線(xiàn)的對(duì)稱(chēng)軸是在y軸的右側(cè);
C. 拋物線(xiàn)一定經(jīng)過(guò)點(diǎn)(3,0) D. 在對(duì)稱(chēng)軸左側(cè),y隨x增大而減。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com