如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖像,直線PB是一次函數(shù)y=-2x+m(m>n)的圖像。
(1)用m,n表示A、B 、P點(diǎn)的坐標(biāo);
(2)若點(diǎn)Q是PA與y軸的交點(diǎn),且四邊形PQOB的面積是,AB=2,試求出點(diǎn)P的坐標(biāo),并求出直線PA與PB的表達(dá)式。
解:(1)A(-n,0), B( ,0), P( );
。2)連接PO,則依題意:m>0,n>0 
             SΔPOB= OB·|yp|= · · = ,  
               SΔPOQ= OQ·|xp|= ·n· = ,   
           ∵ S四邊形PQOB=SΔPOB+ SΔPOQ = ,AB=2, 
           ∴     解得:m=2, n=1. 
           故P點(diǎn)坐標(biāo)為( , ),直線PA的解析式是y=x+1,直線PB的解析式是y=-2x+2。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(精英家教網(wǎng)m>n)的圖象.
(1)用m,n表示A、B、P點(diǎn)的坐標(biāo);
(2)若點(diǎn)Q是PA與y軸的交點(diǎn),且四邊形PQOB的面積是
56
,AB=2,試求出點(diǎn)P的坐標(biāo),并求出直線PA與PB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線PA是一次函數(shù)y=x+n(n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點(diǎn)的坐標(biāo);
(2)若點(diǎn)Q是PA與y軸的交點(diǎn),且P點(diǎn)坐標(biāo)為(
1
3
,
4
3
),試求四邊形PQOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:期末題 題型:解答題

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=﹣2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點(diǎn)的坐標(biāo);
(2)若點(diǎn)Q是PA與y軸的交點(diǎn),且四邊形PQOB的面積是,AB=2,試求出點(diǎn)P的坐標(biāo),并求出直線PA與PB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年1月中考數(shù)學(xué)模擬試卷(11)(解析版) 題型:解答題

如圖,已知直線PA是一次函數(shù)y=x+n (n>0)的圖象,直線PB是一次函數(shù)y=-2x+m(m>n)的圖象.
(1)用m,n表示A、B、P點(diǎn)的坐標(biāo);
(2)若點(diǎn)Q是PA與y軸的交點(diǎn),且四邊形PQOB的面積是,AB=2,試求出點(diǎn)P的坐標(biāo),并求出直線PA與PB的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案