【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與y

軸相交于負(fù)半軸。給出四個結(jié)論:①;②;③;④ ,其中正確結(jié)論的序

號是___________

【答案】②③④.

【解析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.

解:(1)①由拋物線的開口方向向上可推出a>0,正確;
②因為對稱軸在y軸右側(cè),對稱軸為x=->0,又因為a>0,∴b<0,錯誤;
③由拋物線與y軸的交點在y軸的負(fù)半軸上,∴c<0,錯誤;
④由圖象可知:當(dāng)x=1時y=0,∴a+b+c=0,正確.
故(1)中,正確結(jié)論的序號是①④.
(2)①∵a>0,b<0,c<0,∴abc>0,錯誤;
②由圖象可知:對稱軸x=->0且對稱軸x=-<1,∴2a+b>0,正確;
③由圖象可知:當(dāng)x=-1時y=2,∴a-b+c=2,當(dāng)x=1時y=0,∴a+b+c=0;
a-b+c=2與a+b+c=0相加得2a+2c=2,解得a+c=1,正確;
④∵a+c=1,移項得a=1-c,又∵c<0,∴a>1,正確.
故(2)中,正確結(jié)論的序號是②③④.

“點睛”二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>0;否則a<0.(2)b由對稱軸和a的符號確定:由對稱軸公式x=-判斷符號.(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>0;否則c<0.(4)b2-4ac由拋物線與x軸交點的個數(shù)確定:2個交點,b2-4ac>0;1個交點,b2-4ac=0;沒有交點,b2-4ac<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cab、c為常數(shù),且a≠0)經(jīng)過A、B、C、D四個點,其中橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:

A

B

C

D

x

-1

0

1

3

y

-1

3

5

3

(1)求二次函數(shù)解析式;

(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中, , ,點、 分別在射線、上(點不與點、點重合),且保持.

①若點在線段上(如圖),且,求線段的長;

②若, ,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+cx軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數(shù)表達式;

(2)若點P在拋物線上,且SAOP=4SBOC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a-4a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】am=2bm=3,則(abm=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,據(jù)調(diào)研顯示,每個檔次的日產(chǎn)量及相應(yīng)的單件利潤如下表所示(其中x為正整數(shù),且1≤x≤10):

為了便于調(diào)控,此工廠每天只生產(chǎn)一個檔次的產(chǎn)品.當(dāng)生產(chǎn)質(zhì)量檔次為x的產(chǎn)品時,當(dāng)天的利潤為y萬元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)工廠為獲得最大利潤,應(yīng)選擇生產(chǎn)哪個檔次的產(chǎn)品?并求出當(dāng)天利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度.

(結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈ , ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的內(nèi)切圓,切點分別為DE、F , .

1)求∠BOC的度數(shù);

2)求∠EDF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案