【題目】如圖,ABC中,AB=AC=2,BC邊上有10個(gè)不同的點(diǎn)P1,P2,……,P10, (i = 1,2,……,10),那么 M1+M2+……+M10的值為(

A. 4 B. 14 C. 40 D. 不能確定

【答案】C

【解析】

ADBCD.根據(jù)勾股定理,APi2=AD2+DPi2=AD2+BDBPi2=AD2+BD22BDBPi+BPi2,PiBPiC=PiBBCPiB)=2BDBPiBPi2從而求得Mi=AD2+BD2,即可求解.

ADBCDBC=2BD=2CD

根據(jù)勾股定理,

APi2=AD2+DPi2=AD2+BDBPi2=AD2+BD22BDBPi+BPi2,

PiBPiC=PiBBCPiB)=2BDBPiBPi2

Mi=AD2+BD2=AB2=4,M1+M2++M10=4×10=40

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中錯(cuò)誤的有( 。﹤(gè)

①絕對值相等的兩數(shù)相等.②若a,b互為相反數(shù),則=﹣1.③如果a大于b,那么a的倒數(shù)小于b的倒數(shù).④任意有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示.⑤x2﹣2x﹣33x3+25是五次四項(xiàng).⑥兩個(gè)負(fù)數(shù)比較大小,絕對值大的反而。咭粋(gè)數(shù)的相反數(shù)一定小于或等于這個(gè)數(shù).⑧正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的任何次冪都是負(fù)數(shù).

A. 4個(gè) B. 5個(gè) C. 6個(gè) D. 7個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某專賣店有 A,B 兩種商品.已知在打折前,買 20 A 商品和 10 B 商品用了 400 元;買 30 A 商品和 20 B 商品用了 640 元.A,B 兩種商品打相同折以后,某人買 100 A 商品和 200 B 商品一共比不打折少花 640 元,計(jì)算打了多少折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一慢車和一快車沿相同路線從A地到B地,所行的路程與時(shí)間的函數(shù)圖象如圖所示.請你根據(jù)圖象,回答下列問題:
(1)慢車比快車早出發(fā)小時(shí),快車追上慢車時(shí)行駛了千米,快車比慢車早小時(shí)到達(dá)B地;
(2)在下列3個(gè)問題中任選一題求解(多做不加分): ①快車追上慢車需幾個(gè)小時(shí)?
②求慢車、快車的速度;
③求A、B兩地之間的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,設(shè)P,Q分別為AB邊,CB邊上的動(dòng)點(diǎn),它們同時(shí)分別從A,C出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),設(shè)P,Q運(yùn)動(dòng)的時(shí)間為t秒.

(1)求△CPQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并求出S的最大值.
(2)t為何值時(shí),△CPQ為直角三角形.
(3)①探索:△CPQ是否可能為正三角形,說明理由.
②P,Q兩點(diǎn)同時(shí)出發(fā),若點(diǎn)P的運(yùn)動(dòng)速度不變,試改變點(diǎn)Q的運(yùn)動(dòng)速度,使△CPQ為正三角形,求出點(diǎn)Q的運(yùn)動(dòng)速度和此時(shí)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,平分平分,相交于點(diǎn),且,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)【閱讀發(fā)現(xiàn)】如圖①,在△ABC中,∠ACB=45°,AD⊥BC于點(diǎn)D,E為AD上一點(diǎn),且DE=BD,可知AB=CE.

(2)【類比探究】如圖②,在正方形ABCD中,對角線AC與BD交于點(diǎn)O,E是OC上任意一點(diǎn),AG⊥BE于點(diǎn)G,交BD于點(diǎn)F.判斷AF與BE的數(shù)量關(guān)系,并加以證明.

(3)【推廣應(yīng)用】在圖②中,若AB=4,BF= ,則△AGE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到ABC,連接AM,BM,BMAC于點(diǎn)O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B在x軸上
(1)在坐標(biāo)系中求作一點(diǎn)M,使得點(diǎn)M到點(diǎn)A,點(diǎn)B和原點(diǎn)O這三點(diǎn)的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若函數(shù)y= 的圖象經(jīng)過點(diǎn)M,且sin∠OAB= ,求k的值.

查看答案和解析>>

同步練習(xí)冊答案