【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別為邊AB、CD的中點(diǎn),BD是平行四邊形ABCD的對(duì)角線,AG∥BD交CB的延長(zhǎng)線于點(diǎn)G
(1)求證:四邊形BEDF是平行四邊形;
(2)若AE=DE,則四邊形AGBD是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
【答案】(1)見解析;(2)若AE=DE,則四邊形AGBD是矩形;理由見解析.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得出AD∥BC,DC∥AB,DC=AB,推出DF=BE,DF∥BE,根據(jù)平行四邊形的判定推出即可;
(2)先證明四邊形AGBD是平行四邊形,再證出∠ADB=90°,即可得出結(jié)論.
(1)證明:∴四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD.
∴點(diǎn)EF分別為邊AB、CD的中點(diǎn),
∴BE=AB,DF=CD,
∴BE=DF,
∵BE∥DF,
∴四邊形BEDF是平行四邊形;
(2)解:若AE=DE,則四邊形AGBD是矩形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BG,
∵AG∥BD,
∴四邊形AGBD是平行四邊形,
∵點(diǎn)E是AB的中點(diǎn),
∴AE=BE=AB,
∵AE=DE,
∴AE=DE=BE,
∴∠DAE=∠ADE,∠EDB=∠EBD,
∵∠DAE+∠ADE+∠EDB+∠EBD=180°,
∴2∠ADE+2∠EDB=180°,
∴∠ADE+∠EDB=90°,即∠ADB=90°,
∴平行四邊形AGBD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】移動(dòng)通信公司建設(shè)的鋼架信號(hào)塔(如圖1),它的一個(gè)側(cè)面的示意圖(如圖2).CD是等腰三角形ABC底邊上的高,分別過點(diǎn)A、點(diǎn)B作兩腰的垂線段,垂足分別為B1,A1,再過A1,B1分別作兩腰的垂線段所得的垂足為B2,A2,用同樣的作法依次得到垂足B3,A3,….若AB為3米,sinα=,則水平鋼條A2B2的長(zhǎng)度為( )
A. 米B. 2米C. 米D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減;⑥a+b+c>0正確的有( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在AB、CD上,DG⊥EF于點(diǎn)H,交BC于點(diǎn)G,點(diǎn)P在線段BG上.若∠PEF=45°,AE=CG=5,PG=5,則EP=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),它將推動(dòng)我國數(shù)字經(jīng)濟(jì)發(fā)展邁上新臺(tái)階. 據(jù)預(yù)測(cè),2020年到2030年中國5G直接經(jīng)濟(jì)產(chǎn)出和間接經(jīng)濟(jì)產(chǎn)出的情況如下圖所示.
根據(jù)上圖提供的信息,下列推斷不合理的是( )
A.2030年5G間接經(jīng)濟(jì)產(chǎn)出比5G直接經(jīng)濟(jì)產(chǎn)出多4.2萬億元
B.2020年到2030年,5G直接經(jīng)濟(jì)產(chǎn)出和5G間接經(jīng)濟(jì)產(chǎn)出都是逐年增長(zhǎng)
C.2030年5G直接經(jīng)濟(jì)產(chǎn)出約為2020年5G直接經(jīng)濟(jì)產(chǎn)出的13倍
D.2022年到2023年與2023年到2024年5G間接經(jīng)濟(jì)產(chǎn)出的增長(zhǎng)率相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補(bǔ)全整個(gè)過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生的校園文化生活,學(xué)校開設(shè)了書法、體育、美術(shù)音樂共四門選修課程.為了合理的分配教室,教務(wù)處問卷調(diào)查了部分學(xué)生,并將了解的情況繪制成如下不完整的統(tǒng)計(jì)圖:
(1)參與問卷調(diào)查的共有________人,其中選修美術(shù)的有________人,選修體育的學(xué)生人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖中圓心角的度數(shù)為________.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若每人必須選修一門課程,且只能選一門,已知小紅沒有選體育,小剛沒有選修書法和美術(shù),則他們選修同一門課程的概率是多少,列樹狀圖或列表法求解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com