【題目】ABC中,AB=ACAC邊上的中線BDABC的周長(zhǎng)分成15、18兩部分,則BC=_____.

【答案】913

【解析】

作出圖形,分兩種情況討論:AB+AD=15AB+AD=18.根據(jù)等腰三角形的性質(zhì)及三角形三邊關(guān)系可求出BC的長(zhǎng).

如圖所示,

BD是等腰△ABC的中線,可設(shè)AD=CD=x,則AB=AC=2x,

又知BD將三角形周長(zhǎng)分為1518兩部分,

∴可知分為兩種情況:

AB+AD=15,即3x=15,解得x=5,即CD=5,

此時(shí)BC+CD=18,

BC=18CD=185=13;

AB+AD=18,即3x=18,解得x=6,即CD=6

此時(shí)BC+CD=15

BC=18CD=156=9

經(jīng)驗(yàn)證,這兩種情況都是成立的.

故答案為:913

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DEBC,AO,DF交于點(diǎn)C.EAB=BCF.

(1)求證:ABDF;

(2)求證:OB2=OEOF;

(3)連接OD,若∠OBC=ODC,求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著平安寶塔之稱.某校數(shù)學(xué)社團(tuán)對(duì)其高度 AB進(jìn)行了測(cè)量.如圖,他們從塔底A的點(diǎn)B出發(fā),沿水平方向行走了13米,到達(dá)點(diǎn)C,然后沿斜坡CD繼續(xù)前進(jìn)到達(dá)點(diǎn)D處,已知DC=BC.在點(diǎn)D處用測(cè)角儀測(cè)得塔頂A的仰角為42°(點(diǎn)A,B,C,D,E在同一平面內(nèi)).其中測(cè)角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A. 22.5 B. 24.0 C. 28.0 D. 33.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會(huì)主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊(duì),現(xiàn)圍繞你最喜歡的文體活動(dòng)項(xiàng)目(每人僅限一項(xiàng)),在全村范圍內(nèi)隨機(jī)抽取部分村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)這次參與調(diào)查的村民人數(shù)為   人;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中劃龍舟所在扇形的圓心角的度數(shù);

(4)若在廣場(chǎng)舞、腰鼓、花鼓戲、劃龍舟這四個(gè)項(xiàng)目中任選兩項(xiàng)組隊(duì)參加端午節(jié)慶典活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求恰好選中花鼓戲、劃龍舟這兩個(gè)項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線F:y=x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn)O,且與x軸另一交點(diǎn)為(﹣,0).

(1)求拋物線F的解析式;

(2)如圖1,直線l:y=x+m(m>0)與拋物線F相交于點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)(點(diǎn)A在第二象限),求y2﹣y1的值(用含m的式子表示);

(3)在(2)中,若m=,設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),如圖2.

①判斷AA′B的形狀,并說明理由;

②平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)A、B、A′、P為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖E是正方形ABCDAB的中點(diǎn),連接CE過點(diǎn)BBHCEF,ACG,ADH.下列說法 ;②點(diǎn)FGB的中點(diǎn); ; 其中正確的結(jié)論的序號(hào)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將等腰△ABC沿對(duì)稱軸折疊后,得到△ADC(△ADB),若,則稱等腰△ABC長(zhǎng)月三角形”ABC.

1)結(jié)合題目情境,請(qǐng)你判斷長(zhǎng)月三角形一定會(huì)是______三角形.

2)如圖2,C為線段AB上一點(diǎn),分別以ACBC為邊作長(zhǎng)月三角形”ACD長(zhǎng)月三角形”BCE,連接AE、BD交于點(diǎn)O,AECD交于點(diǎn)PCEBD交于點(diǎn)M.

①求證:;

②求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形DEFG的頂點(diǎn)D、E在△ABC的邊BC上,頂點(diǎn)G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個(gè)正方形的邊長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn),且與x軸交于A(﹣2,0).

(1)求此二次函數(shù)解析式及頂點(diǎn)B的坐標(biāo);

(2)在拋物線上有一點(diǎn)P,滿足SAOP=3,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案