精英家教網 > 初中數學 > 題目詳情
(本小題滿分8分)
如圖,已知在⊙O中,AB=4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

(1)求圖中陰影部分的面積;

 

 
(2)若用陰影扇形OBD圍成一個圓錐側面,請求出這個圓錐的底面圓的半徑.

(3) 試判斷⊙O中其余部分能否給(2)中的圓錐做兩個底面。
解:(1)法一:過O作OE⊥AB于E,則AE=AB=2.····················· 1分
  
在RtAEO中,∠BAC=30°,cos30°=
∴OA===4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S陰影==.································································· 4分
法二:連結AD.∵AC⊥BD,AC是直徑,

 

 
∴AC垂直平分BD.     ……………………1分

∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°,
∴∠BOD=120°.        ……………………2分
∵BF=AB=2,sin60°=,AF=AB·sin60°=4×=6.
∴OB2=BF2+OF2.即.∴OB=4.   ···························· 3分
∴S陰影=S=.      ········································································ 4分
法三:連結BC.∵AC為⊙O的直徑,∴∠ABC=90°.……………………1分

∵AB=4,∴.        ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S陰影=π·OA2=×42·π=.……………………4分
以下同法一.
(2)設圓錐的底面圓的半徑為r,則周長為2πr,
.  ∴.       ···················································· 6分
(3)<8-12,故能得到兩個這樣的底面!8分
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,BC交⊙O于點D,DE⊥AC于點E,要使DE是⊙O的切線,還需補充一個條件,則補充的條件不正確的是(  )
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(11·貴港)(本題滿分11分)
如圖所示,在以O為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.

(1)求證:△AOB∽△BDC;
(2)設大圓的半徑為x,CD的長為y:
①求y與x之間的函數關系式;
②當BE與小圓相切時,求x的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若一直角三角形的斜邊長為,內切圓半徑是,則內切圓的面積與三角形面積之比是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(10分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,DE=3,
連接BD,過點E作EM∥BD,交BA的延長線于點M.

(1)求⊙O的半徑;
(2)求證:EM是⊙O的切線;
(3)若弦DF與直徑AB相交于點P,當∠APD=45º時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖2,點、、在⊙O上,若,則的度數為 (    ).
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

(2011年青海,4,2分)如圖1所示,⊙O的兩條切線PA和PB相交于點P,與⊙O相切于A、B兩點,C是⊙O上的一點,若∠P=700,則∠ACB=         。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

(11·永州)如圖,在⊙O中,直徑CD垂直弦AB于點E,連接OB,CB,已知⊙O的半徑為2,AB=,則∠BCD=________度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(11·柳州)(本題滿分10分)
如圖,已知AB是⊙O的直徑,銳角∠DAB的平分線AC交⊙O于點C,作CDAD,垂足為D,直線CDAB的延長線交于點E
(1)求證:直線CD為⊙O的切線;
(2)當AB=2BE,且CE=時,求AD的長.

查看答案和解析>>

同步練習冊答案