【題目】如圖,四邊形內(nèi)接于,平分

1)如圖1,求證:;

2)如圖2,,弦于點(diǎn),若,求證:;

3)如圖3,在(2)的條件下,點(diǎn)上一點(diǎn),連接,若,求線段的長度.

【答案】1)見詳解;(2)見詳解;(3.

【解析】

1)作OMABM,ONADN,由角平分線定理得到OM=ON,然后即可得到AB=AD;

2)在FC上截取CP=BC,連接AP、AC,由CFBC=DF,得到PF=DF,然后證明△ABC≌△APC,得到AB=AP=AD,由等腰三角形三線合一定理,即可得到結(jié)論;

3)作BTCD,分別交ADAE于點(diǎn)T、H,則∠ATB=D,根據(jù)平行四邊形性質(zhì),得到邊的關(guān)系,然后求出AT=3,然后證明△AHT∽△BHG,得到,然后根據(jù)線段的比例關(guān)系,得到,,進(jìn)而求出AG的長度.

1)證明:如圖1,作OMABM,ONADN,

平分

OM=ON,

AM=AN,

AB=AD

2)證明:如圖2,在FC上截取CP=BC,連接AP、AC

CFCP=PF,則CFBC=PF,

CFBC=DF,

PF=DF,

AB=AD,

∴∠ACB=ACD,

CP=BC,AC=AC,

∴△ABC≌△APCSAS),

AB=AP=AD,

PF=DF,

AECD(三線合一);

3)解:如圖3,作BTCD,分別交ADAE于點(diǎn)T、H,則∠ATB=D,

,

AB=CD,

∴∠BAD=D

∵∠ABC+D=180°,

∴∠ABC+BAD=180°,

ADBC,

TD=BC,BT=CD

CFBC=DF

TD=BC= CFDF=CD2DF

,

TD=CD

AT=ADTD=CDTD=CDCD=3;

AECD,BTCD,

∴∠D+DAE=90°,AEBT

∴∠AGB+DAE=90°,

∴∠AGB=D,

∴∠AGB=ATB,

∴△AHT∽△BHG,

,即,

設(shè),則

AD=BT=

TH=BTBH=,

BTCD,

,即,

,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)EF分別在AB,AD上,若CE5,且∠ECF45°,則CF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx2+bx+c過點(diǎn)A1,0),C0,﹣3

1)求此二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).

2)設(shè)點(diǎn)P是該拋物線上的動點(diǎn),當(dāng)△ABP的面積等于△ABC面積的時,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ABC=90°,點(diǎn)DBC的延長線上,且BD=AB,過BBEAC,與BD的垂線DE交于點(diǎn)E,

1)求證:△ABC≌△BDE

2)三角形BDE可由三角形ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)內(nèi)部的一點(diǎn),連接、,,且,若,,則線段的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)廠家去年銷往農(nóng)村的某品牌洗碗機(jī)每臺的售價(元)與月份之間滿足函數(shù)關(guān)系,去年的月銷售量戶(萬臺)與月份之間成一次函數(shù)關(guān)系,其中兩個月的銷售情況如表:

月份:

1月

5月

銷售量:

3.9萬臺

4.3萬臺

(1)求該品牌洗碗機(jī)在去年哪個月銷往農(nóng)村的銷售金額最大?最大是多少?(提示:銷售金額=銷量×售價)

(2)經(jīng)統(tǒng)計和計算.得到此洗碗機(jī)在農(nóng)村地區(qū)的銷售數(shù)據(jù),如表:

銷售數(shù)據(jù)信息表

售價(元/臺)

銷量(萬臺)

補(bǔ)貼金額(萬元)

去年12月份

2000

5

/

今年2月份

/

今年3月份

312

由于國家實施“家電下鄉(xiāng)政策”,所以今年3月份國家按該產(chǎn)品售價的13%給子財政補(bǔ)貼,共補(bǔ)貼了312萬元,從表格中,我們可以看出:今年3月份與今年2月份相比較,售價保持不變,但銷量增加了1.5萬臺.今年2月份與去年12月份相比較,售價下降了%,銷量下降了1.5%;請用表示表格中的,,并根據(jù)已知條件求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(diǎn)(的左側(cè)),且點(diǎn)坐標(biāo)為.平行于軸的直線點(diǎn).

求一次函數(shù)與二次函數(shù)的解析式;

判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;

把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于,兩點(diǎn),一次函數(shù)圖象交軸于點(diǎn).當(dāng)為何值時,過,三點(diǎn)的圓的面積最小?最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,C、D上兩點(diǎn),且,垂足為F,直線CFAB的延長線于點(diǎn)E,連接AC

1)判斷EF的位置關(guān)系,并說明理由:

2)若,的半徑為4,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)經(jīng)典,其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1.如圖,已知弦尺,弓形高寸,(注:1=10寸)問這塊圓柱形木材的直徑是(

A.13B.6.5C.20D.26

查看答案和解析>>

同步練習(xí)冊答案