【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.

(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;

(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫出圖形,并直接寫出MF的長(zhǎng).

【答案】(1)DM⊥EM,DM=EM,理由見解析; (2)DM⊥EM,DM=EM,理由見解析;(3)滿足條件的MF的值為

【解析】1)結(jié)論:DMEM,DM=EM.只要證明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因?yàn)椤?/span>EDH=90°,可得DMEM,DM=ME;

(2)結(jié)論不變,證明方法同(1)類似;

(3)分兩種情形畫出圖形,利用勾股定理以及等腰直角三角形的性質(zhì)解決問題即可.

(1)結(jié)論:DMEM,DM=EM,

理由:如圖1中,延長(zhǎng)EMADH,

∵四邊形ABCD是正方形,四邊形EFGC是正方形,

∴∠ADE=DEF=90°,AD=CD,

ADEF,

∴∠MAH=MFE,

AM=MF,AMH=FME,

∴△AMH≌△FME,

MH=ME,AH=EF=EC,

DH=DE,

∵∠EDH=90°,

DMEM,DM=ME;

(2)如圖2中,結(jié)論不變.DMEM,DM=EM,

理由:如圖2中,延長(zhǎng)EMDA的延長(zhǎng)線于H,

∵四邊形ABCD是正方形,四邊形EFGC是正方形,

∴∠ADE=DEF=90°,AD=CD,

ADEF,

∴∠MAH=MFE,

AM=MF,AMH=FME,

∴△AMH≌△FME,

MH=ME,AH=EF=EC,

DH=DE,

∵∠EDH=90°,

DMEM,DM=ME;

(3)如圖3中,作MRDER,

RtCDE中,DE==12,

DM=NE,DMME,

MR=DE,MR=DE=6,DR=RE=6,

RtFMR中,FM=

如圖4中,作MRDER,

RtMRF中,FM=,

故滿足條件的MF的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,ABAC,以BC為直角邊作等腰RtBCD,∠CBD90°,斜邊CDAB于點(diǎn)E

1)如圖1,若∠ABC60°,BE4,作EHBCH,求線段CE的長(zhǎng);

2)如圖2,作CFAC,且CFAC,連接BF,且EAB中點(diǎn),求證:CD2BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某直銷公司現(xiàn)有名推銷員,月份每個(gè)人完成銷售額(單位:萬元),數(shù)據(jù)如下:

整理上面的數(shù)據(jù)得到如下統(tǒng)計(jì)表:

銷售額

人數(shù)

1)統(tǒng)計(jì)表中的 ;

2)銷售額的平均數(shù)是 ;眾數(shù)是 ;中位數(shù)是 .

3月起,公司為了提高推銷員的積極性,將采取績(jī)效工資制度:規(guī)定一個(gè)基本銷售額,在基本銷售額內(nèi),按抽成;從公司低成本與員工愿意接受兩個(gè)層面考慮,你認(rèn)為基本銷售額定位多少萬元?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1, 均為等邊三角形,點(diǎn)在同一直線上,連接

①求證:; ②求的度數(shù).

(2)拓展探究:如圖2, 均為等腰直角三角形,,點(diǎn)在同一直線上邊上的高,連接

①求的度數(shù):

②判斷線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可).

解決問題:如圖3,均為等腰三角形,,點(diǎn)在同一直線上,連接.的度數(shù)(用含的代數(shù)式表示,直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,⊙P經(jīng)過x軸上一點(diǎn)C,與y軸分別相交于A、B兩點(diǎn),連接AP并延長(zhǎng)分別交⊙P、x軸于點(diǎn)D、點(diǎn)E,連接DC并延長(zhǎng)交y軸于點(diǎn)F ,且DC=FC,點(diǎn)D的坐標(biāo)為(12,-2).

(1)判斷⊙Px軸的位置關(guān)系,并說明理由;

(2)⊙P半徑;

(3)若弧BD上有一動(dòng)點(diǎn)M,連接AM,過B點(diǎn)作BN⊥AM,垂足為N,連DN,則DN的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1,0),B0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點(diǎn)G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點(diǎn)E,則k的值是 ( )

A33B34C35D36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在中,,過點(diǎn)引一條射線上一點(diǎn).

1)如圖1,,射線內(nèi),,求證:.

請(qǐng)根據(jù)以下思維框圖,寫出證明過程.

2)如圖2,已知.

①當(dāng)射線內(nèi),求的度數(shù).

②當(dāng)射線下方,請(qǐng)問的度數(shù)會(huì)變嗎?若不變,請(qǐng)說明理由;若改變,請(qǐng)直接寫出的度數(shù).

3)在第(2)題的條件下,作于點(diǎn),連結(jié),已知,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一次知識(shí)競(jìng)賽,滿分10分,學(xué)生得分均為整數(shù),成績(jī)達(dá)到6分以上(包括6分)為合格,達(dá)到9分以上(包括9分)為優(yōu)秀.這次競(jìng)賽中甲、乙兩組學(xué)生成績(jī)分布的條形統(tǒng)計(jì)圖如圖所示.

1)補(bǔ)充完成下面的成績(jī)統(tǒng)計(jì)分析表:

2)小明同學(xué)說:“這次競(jìng)賽我得了7分,在我們小組中排名屬中游偏上!”觀察上表可知,小明是 組的學(xué)生;(填

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績(jī)好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們組的成績(jī)要好于甲組,請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,垂足為.

(1)填空:_________°;

(2)是線段上的動(dòng)點(diǎn),連結(jié),將線段繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),連接,得到.

①如圖1,若點(diǎn)在直線上, ,求的值.

②連結(jié),直線A直線是否平行,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案