【題目】如圖,Rt△ABC中,∠ABC90°,以AB為直徑的⊙OAC于點(diǎn)D,EBC的中點(diǎn),連接DE、OE

1)判斷DE⊙O的位置關(guān)系并說明理由;

2)求證:

3)若tanCDE2,求AD的長(zhǎng).

【答案】1DE⊙O相切,理由見解析; 2)證明見解析;(3

【解析】

解:(1) DE⊙O相切

理由如下:連接ODBD,

∵AB是直徑,∴∠ADB∠BDC90°

∵EBC的中點(diǎn),∴DEBECE,∴∠EDB∠EBD,

∵ODOB,∴∠OBD∠ODB

∴∠EDO∠EBO90°

∴DE⊙O相切

2)證明:由題意得OE是的△ABC的中位線,∴AC=2OE

∵∠ABC=∠BDC=900∠C=∠C ,ABC∽BDC

∴BC2=CD·AC,∴BC2=2CD·OE

(3) ∵DE2 BC4 AB4. tanC

tanA, 設(shè)BDAD,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BCOB,點(diǎn)D上一動(dòng)點(diǎn),點(diǎn)ECD中點(diǎn),連接BD分別交OC,OE于點(diǎn)FG

(1)求∠DGE的度數(shù);

(2),求的值;

(3)記△CFB,△DGO的面積分別為S1,S2,若k,求的值.(用含k的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解飲料自動(dòng)售賣機(jī)的銷售情況,對(duì)甲、乙兩個(gè)城市的飲料自動(dòng)售賣機(jī)進(jìn)行抽樣調(diào)查,從兩個(gè)城市中所有的飲料自動(dòng)售賣機(jī)中分別抽取16臺(tái),記錄下某一天各自的銷售情況(單位:元)如下:

甲:2545、3822、1028、6118、38、45、78、45、5832、1678

乙:48、52、21、25、3312、42、3941、42、33、44、3318、6872

整理、描述數(shù)據(jù):對(duì)銷售金額進(jìn)行分組,各組的頻數(shù)如下:

銷傳金額

3

6

4

3

2

6

a

b

分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:

城市

中位數(shù)

平均數(shù)

眾數(shù)

C

398

45

40

389

d

請(qǐng)根據(jù)以上信息,回答下列問題:

1)填空:a= b=, c=, d=

2)兩個(gè)城市目前共有飲料自動(dòng)售賣機(jī)4000臺(tái),估計(jì)日銷售金額不低于40元的數(shù)量約為多少臺(tái)?

3)根據(jù)以上數(shù)據(jù),你認(rèn)為甲、乙哪個(gè)城市的飲料自動(dòng)售賣機(jī)銷售情況較好?請(qǐng)說明理由(一條理由即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式,探究其中的規(guī)律:①+1,②+,③+,④+,

1)按以上規(guī)律寫出第⑧個(gè)等式:_______

2)猜想并寫出第n個(gè)等式:_________;

3)請(qǐng)證明猜想的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次七年級(jí)科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品,C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.

(1)B班參賽作品有多少件?

(2)請(qǐng)你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;

(3)通過計(jì)算說明,哪個(gè)班的獲獎(jiǎng)率高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以扇形 OAB 的頂點(diǎn) O 為原點(diǎn),半徑 OB 所在的直線為 x 軸,建立平面直角坐標(biāo)系,點(diǎn) B 的坐標(biāo)為(2,0),若拋物線 (n 為常數(shù))與扇形 OAB 的邊界總有兩個(gè)公共點(diǎn)則 n 的取值范圍是( )

A.n>-4B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 y x2 mx 2m 4m>0).

1)證明:該拋物線與 x 軸總有兩個(gè)不同的交點(diǎn);

2)設(shè)該拋物線與 x 軸的兩個(gè)交點(diǎn)分別為 A,B(點(diǎn) A 在點(diǎn) B 的右側(cè)),與 y 軸交于點(diǎn) C,AB,三點(diǎn)都在圓 P 上.

①若已知 B-30),拋物線上存在一點(diǎn) M 使ABM 的面積為 15,求點(diǎn) M 的坐標(biāo);

②試判斷:不論 m 取任何正數(shù),圓 P 是否經(jīng)過 y 軸上某個(gè)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線ACBD相交于點(diǎn)O,按以下步驟作圖:①以點(diǎn)A為圓心,以任意長(zhǎng)為半徑作弧,分別交AO,AB于點(diǎn)MN;②以點(diǎn)O為圓心,以AM長(zhǎng)為半徑作弧,交OC于點(diǎn)M';③以點(diǎn)M'為圓心,以MN長(zhǎng)為半徑作弧,在∠COB內(nèi)部交前面的弧于點(diǎn)N';④過點(diǎn)N'作射線ON'BC于點(diǎn)E.若AB8,則線段OE的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長(zhǎng)江邊某瞭望臺(tái)D處,測(cè)得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長(zhǎng)BC=10米,則此時(shí)AB的長(zhǎng)約為(  )(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

同步練習(xí)冊(cè)答案