【題目】如圖,在ABC中,BE,CD分別為其角平分線且交于點(diǎn)O.

(1)當(dāng)∠A60°時(shí),求∠BOC的度數(shù);

(2)當(dāng)∠A100°時(shí),求∠BOC的度數(shù);

(3)當(dāng)∠Aα時(shí),求∠BOC的度數(shù)

【答案】1BOC120°;(2BOC140°;(3BOC90°α.

【解析】試題分析:(1)先根據(jù)角平分線的性質(zhì)得出∠OBC+∠OCB的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論;
(2)先根據(jù)∠A=100°求出∠ABC+∠ACB的度數(shù),再由角平分線的定義得出∠OBC+∠OCB的度數(shù),根據(jù)三角形內(nèi)角和定理即可得出結(jié)論;
(3)根據(jù)∠A=α°求出∠ABC+∠ACB的度數(shù),再由角平分線的定義得出∠OBC+∠OCB的度數(shù),根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.

試題解析:(1)因?yàn)椤?/span>A60°,

所以∠ABCACB120°.

因?yàn)?/span>BECDABC的角平分線,

所以∠EBCABC,DCBACB.

所以∠EBCDCBABCACB (ABCACB)60°,

所以∠BOC180°(EBCDCB)180°60°120°.

(2)因?yàn)椤?/span>A100°

所以∠ABCACB80°.

因?yàn)?/span>BE,CDABC的角平分線,

所以∠EBCABC,DCBACB.

所以∠EBCDCBABCACB (ABCACB)40°,所以∠BOC180°(EBCDCB)180°40°140°.

(3)因?yàn)椤?/span>Aα

所以∠ABCACB180°α.

因?yàn)?/span>BE,CDABC的角平分線,

所以∠EBCABC,DCBACB.

所以∠EBCDCBABCACB (ABCACB)90°α,

所以∠BOC180°(EBCDCB)180°-(90°-α.)=90°α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,四邊形BEFG均為正方形,連接AG,CE.試說明:

(1)AG=CE;

(2)AG⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn)是A(-2,-4,C(4,n),與y軸交于點(diǎn)B,與x軸交于點(diǎn)D

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連結(jié)OA,OC,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A1,2),B31),C﹣2﹣1).

1)在圖中作出ABC關(guān)于y軸對(duì)稱的A1B1C1

2)寫出A1,B1,C1的坐標(biāo),A1  ;B1   C1   .(直接寫出答案)

3A1B1C1的面積為       .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,由于受國(guó)際石油市場(chǎng)的影響,汽油價(jià)格不斷上漲.下面是小明與爸爸的對(duì)話:

小明:“爸爸,聽說今年5月份的汽油價(jià)格上漲了不少。 

爸爸:“是啊,今年5月份每升汽油的價(jià)格是去年5月份每升汽油的價(jià)格的倍,用150元給汽車加的油量比去年少11.25.”

小明:“今年5月份每升汽油的價(jià)格是多少呢?”

聰明的你,根據(jù)上面的對(duì)話幫小明計(jì)算一下今年5月份每升汽油的價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某單位職工的年齡(取正整數(shù))的頻率分布直方圖,根據(jù)圖中提供的信息,回答下列問題:

(1)該單位共有職工多少人?

(2)不小于38歲但小于44歲的職工人數(shù)占職工總?cè)藬?shù)的百分比是多少?

(3)如果42歲的職工有4人,那么年齡在42歲以上的職工有幾人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知CD是經(jīng)過BCA頂點(diǎn)C的一條直線,CA=CBE、F分別是直線CD上兩點(diǎn),且BEC=CFA=

(1)若直線CD經(jīng)過BCA的內(nèi)部,且E、F在射線CD上,請(qǐng)解決下面問題:

如圖1BCA=90°,=90°、探索三條線段EF、BEAF的數(shù)量關(guān)系并證明你的結(jié)論.

如圖2,若BCA180°, 請(qǐng)?zhí)砑右粋(gè)關(guān)于BCA關(guān)系的條件___ ____使中的結(jié)論仍然成立;

(2)如圖3,若直線CD經(jīng)過BCA的外部,=BCA,請(qǐng)寫出三條線段EF、BEAF的數(shù)量關(guān)系并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將五個(gè)邊長(zhǎng)都為2cm的正方形按如圖所示擺放,點(diǎn)A、B、C、D分別是四個(gè)正方形的中心,則圖中四塊陰影面積的和為( )

A.2cm2 B.4cm2 C.6cm2 D.8cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案