【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=2,F(xiàn)D=4,則BC的長為(
A.6
B.2
C.4
D.4

【答案】D
【解析】解:過點E作EM⊥BC于M,交BF于N,
∵四邊形ABCD是矩形,
∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,
∴四邊形ABME是矩形,
∴AE=BM,
由折疊的性質(zhì)得:AE=GE,∠EGN=∠A=90°,
∴EG=BM,
在△ENG與△BNM中,
,
∴△ENG≌△BNM(AAS),
∴NG=NM,
∴CM=DE,
∵E是AD的中點,
∴AE=ED=BM=CM,
∵EM∥CD,
∴BN:NF=BM:CM,
∴BN=NF,
∴NM= CF=1,
∴NG=1,
∵BG=AB=CD=CF+DF=6,
∴BN=BG﹣NG=6﹣1=5,
∴BF=2BN=10,
∴BC= = =4
故選D.
【考點精析】關(guān)于本題考查的矩形的性質(zhì)和翻折變換(折疊問題),需要了解矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°,DAB=45°.求證:AC=DC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓O的直徑AB=4,以長為2的弦PQ為直徑,向點O方向作半圓M,其中P點在 上且不與A點重合,但Q點可與B點重合.
發(fā)現(xiàn): 的長與 的長之和為定值l,求l:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第1次輸出的結(jié)果為24,第2次輸出的結(jié)果為12,…第2019次輸出的結(jié)果為( 。

A. 3 B. 6 C. 12 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于兩點,已知點與點關(guān)于坐標原點成中心對稱,且點的坐標為.其中

(1)四邊形     .(填寫四邊形的形狀)

(2)當點的坐標為時,且四邊形是矩形,求,的值.

(3)試探究:隨著的變化,四邊形能不能成為菱形?若能,請直接寫出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與發(fā)現(xiàn)

(1)正方形ABCD中有菱形PEFG,當它們的對角線重合,且點P與點B重合時(如圖1),通過觀察或測量,猜想線段AECG的數(shù)量關(guān)系,并證明你的猜想;

(2)當(1)中的菱形PEFG沿著正方形ABCD的對角線平移到如圖2的位置時,猜想線段AECG的數(shù)量關(guān)系,只寫出猜想不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程

(1)7+6=8-3

(2)4-3(20-)=6-7(9-

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=

查看答案和解析>>

同步練習冊答案