【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列選項(xiàng)中⊙O的半徑為的是( )
A. B. C. D.
【答案】C
【解析】
A、設(shè)圓的半徑是x,圓切AC于E,切BC于D,且AB于F,如圖(1)同樣得到正方形OECD,AE=AF,BD=BF,則a-x+b-x=c,求出x=,故本選項(xiàng)錯(cuò)誤;
B、設(shè)圓切AB于F,圓的半徑是y,連接OF,如圖(2),則△BCA∽△OFA,∴,∴,解得:y=,故本選項(xiàng)錯(cuò)誤;
C、連接OE、OD,∵AC、BC分別切圓O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,
∴四邊形OECD是正方形,∴OE=EC=CD=OD,設(shè)圓O的半徑是r,∵OE∥BC,∴∠AOE=∠B,
∵∠AEO=∠ODB,∴△ODB∽△AEO,∴,,解得:r=,故本選項(xiàng)正確;
D、O點(diǎn)連接三個(gè)切點(diǎn),從上至下一次為:OD,OE,OF;并設(shè)圓的半徑為x;容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;又∵b-x=AE=AD=a+x-c;所以x=,故本選項(xiàng)錯(cuò)誤.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)的值最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年4月,我市開(kāi)展了“北海歷史文化進(jìn)課堂”的活動(dòng),北海某校政教處就同學(xué)們對(duì)北海歷史文化的了解程度進(jìn)行隨機(jī)抽樣調(diào)查,并繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是 ,調(diào)查中“了解很少”的學(xué)生占 %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校共有學(xué)生900人,那么該校約有多少名學(xué)生“很了解”北海的歷史文化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,回答問(wèn)題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過(guò)程中,利用 法(把未知數(shù)x換為 y)達(dá)到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.
(1)求證:AG=CG;
(2)求證:AG2=GE·GF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸是直線x=-1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB、CD分別切⊙O于A、B、E,CD交PA、PB于C、D兩點(diǎn),若∠P=40°,則∠PAE+∠PBE的度數(shù)為( 。
A. 50° B. 62° C. 66° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,CD⊥AB,垂足為D,AC=20,BC=15.動(dòng)點(diǎn)P從A開(kāi)始,以每秒2個(gè)單位長(zhǎng)的速度沿AB方向向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P分別作AC、BC邊的垂線,垂足為E、F.
(1)求AB與CD的長(zhǎng);
(2)當(dāng)矩形PECF的面積最大時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間t;
(3)以點(diǎn)C為圓心,r為半徑畫(huà)圓,若圓C與斜邊AB有且只有一個(gè)公共點(diǎn)時(shí),求r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB垂直弦CD于點(diǎn)E,連接AD、BC、OC,且OC=5.
(1)若sin∠BCD=,求CD的長(zhǎng);
(2)若∠OCD=4∠BCD,求扇形OAC(陰影部分)的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com