【題目】小李經(jīng)營一個社區(qū)快遞網(wǎng)點,負(fù)責(zé)周邊快件收發(fā),由于疫情原因,到2020年2月12 日網(wǎng)點才可以復(fù)工,而該網(wǎng)點的另外兩名員工因為辦理復(fù)工手續(xù),將分別在2月15日和2月26日返崗,工作據(jù)大數(shù)據(jù)顯示,預(yù)計從復(fù)工之日開始,每日到達(dá)該網(wǎng)點的快件數(shù)量(件)與第天(2月12日為第天)滿足:.已知一位快遞員日均派送快件量為件,通過加班最高可派送件.
前三天小李派送的快件總量為_ 件;
以最高派送量派送快件還有剩余時,則當(dāng)天剩余快件留到第二天優(yōu)先派送,
①到第十天結(jié)束時,滯留的快件共有 件; 到第十四天結(jié)束時,滯留的快件共有__件;
②2月18日后快遞激增爆倉,小李和員工每天加班派送,根據(jù)現(xiàn)有快遞數(shù)量的變化趨勢,從2月19日開始計算,小李至少要加班幾天才可以不用加班派送.(即小李不加班派送的情況下,快遞點沒有滯留件)
到了3月5日,全國疫情穩(wěn)定,預(yù)計每日到達(dá)網(wǎng)點的快件數(shù)量將按新趨勢變化,“女神節(jié)”期間(3月6日-9日)日均快件量為件,3月10日起日均快件量穩(wěn)定在件.此時小李接到快遞總公司新規(guī)定:從3月10日開始,到達(dá)的快件必須當(dāng)天派送完畢,否則將扣除滯留快件滯留費元/件天(之前滯留的快件從3月10日0時開始收取滯留費)為此,小李想到從市場招聘____名臨時工幫助派送快遞,若臨時工基本工資元/天,外加派送費元/件臨時工一天最多可派送快件件,為了將支出降到最低,小李應(yīng)該聘請臨時工幾天,派送快件共多少件?此時最低支出多少元錢?直接寫出你的答案.
【答案】(1)300;(2)①270;1180;②從19日開始計算,小李至少要加班天;(3)小李應(yīng)聘臨時工天,派送件,最低支出元
【解析】
(1)根據(jù)題意分別求出第一天、第二天、第三天的件數(shù),據(jù)此進(jìn)一步計算即可;
(2)①根據(jù)題意求出前十四天的每天的快件數(shù),然后根據(jù)實際每天可派送的快件數(shù)進(jìn)一步分析求解即可;②設(shè)天后滯留快件件,根據(jù)題意得出,由此進(jìn)一步分析即可;
(3)首先根據(jù)題意得出當(dāng)時,(件),又因為3月5日余件快件,由此結(jié)合題意分不聘臨時工,聘臨時工天,聘臨時工天,聘臨時工天多種情況分別求出相應(yīng)的花費,最后通過對比得出答案即可.
(1)由題意得:
第一天的快件數(shù)量為:(件),
第二天的快件數(shù)量為:(件),
第三天的快件數(shù)量為:(件),
∴前三天的快件總量為:(件),
故答案為:300;
(2)①由題意得:
第四天的快件數(shù)量為:(件),
第五天的快件數(shù)量為:(件),
第六天的快件數(shù)量為:(件),
第七天的快件數(shù)量為:(件),
第八天的快件數(shù)量為:(件),
第九天的快件數(shù)量為:(件),
第十天的快件數(shù)量為:(件),
第十一天的快件數(shù)量為:(件),
第十二天的快件數(shù)量為:(件),
第十三天的快件數(shù)量為:(件),
第十四天的快件數(shù)量為:(件),
∵每人每天最高派送180件,
∴第四天到第七天的快件都可以及時派送完,
而第八天到第十天的快件總量為:(件),
∴(件),
∴第十天結(jié)束時滯留快件有270件,
∴從第十一天起到第十四天需派送的快件數(shù)為:(件),
∴(件),
∴第十四天結(jié)束時滯留快件有1180件,
故答案為:270,1180;
②解:設(shè)天后滯留快件件,
則:,
當(dāng)時,快件余件,
當(dāng)時,快件余件,
當(dāng)時,快件已送完,如果人送,快件為件,
∵(天)
答:從19日開始計算,小李至少要加班天;
(3)小李應(yīng)聘臨時工天,派送件,最低支出元,
理由如下:當(dāng)時,(件),
又∵(件),
即3月5日余件快件,
當(dāng)不聘臨時工,(元),
當(dāng)聘臨時工天,(元),
當(dāng)聘臨時工天,(元),
當(dāng)聘臨時工天,(元),
∵,
∴小李應(yīng)聘臨時工天,派送件,最低支出元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上一動點(不與、重合),連接, 作,使,交于點.當(dāng)為等腰三角形時,則的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1、圖2分別是的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,、兩點在小正方形的頂點上,請在圖1、圖2中各取一點(點必須在小正方形的頂點上),使以、、為頂點的三角形分別滿足以下要求:
(1)在圖1中畫一個,使是以為斜邊的直角三角形,且;
(2)在圖2中畫一個,使為等腰三角形,且,直接寫出的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx-3a-5經(jīng)過點A(2,5)
(1)求出a和b之間的數(shù)量關(guān)系.
(2)已知拋物線的頂點為D點,直線AD與y軸交于(0,-7)
①求出此時拋物線的解析式;
②點B為y軸上任意一點且在直線y=5和直線y=-13之間,連接BD繞點B逆時針旋轉(zhuǎn)90°,得到線段BC,連接AB、AC,將AB繞點B順時針旋轉(zhuǎn)90°,得到線段BH.截取BC的中點F和DH的中點G.當(dāng)點D、點H、點C三點共線時,分別求出點F和點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個高腳杯截面圖,杯體呈拋物線狀(杯體厚度不計),點是拋物線的頂點,,點是的中點,當(dāng)高腳杯中裝滿液體時,液面,此時最大深度(液面到最低點的距離)為,將高腳杯繞點緩緩傾斜倒出部分液體,當(dāng)時停止,此時液面為,則液面到平面的距離是________________;此時杯體內(nèi)液體的最大深度為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了加強社區(qū)居民對新型冠狀病非肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計、分析,過程如下:
收集數(shù)據(jù)
甲小區(qū):
乙小區(qū):
整理數(shù)據(jù)
成績(分) | ||||
甲小區(qū) | ||||
乙小區(qū) |
分析數(shù)據(jù)
統(tǒng)計量 | 平均數(shù) | 中位教 | 眾數(shù) |
甲小區(qū) | |||
乙小區(qū) |
應(yīng)用數(shù)據(jù)
(1)填空:_ _;
(2)若甲小區(qū)共有人參與答卷,請估計甲小區(qū)成績大于分的人數(shù);
(3)社區(qū)管理員看完統(tǒng)計數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護知識掌握更好,請你寫出社區(qū)管理員的理由(至少寫出一條) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P在BA的延長線上,PA=AO,PD與⊙O相切于點D,BC⊥AB交PD的延長線于點C,若⊙O的半徑為1,則BC的長是( )
A.1.5B.2C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級有 名學(xué)生,在體育考試前隨機抽取部分學(xué)生進(jìn)行跳繩測試,根據(jù)測試成績制作了下面兩個不完整的統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:
(1)本次參加跳繩測試的學(xué)生人數(shù)為 ,圖 中 的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校九年級跳繩測試中得 分的學(xué)生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com