【題目】如圖,已知點(diǎn)A1 , A2 , …,An均在直線y=x﹣1上,點(diǎn)B1 , B2 , …,Bn均在雙曲線上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=﹣1,則a2015=

【答案】2
【解析】解:∵a1=﹣1,
∴B1的坐標(biāo)是(﹣1,1),
∴A2的坐標(biāo)是(2,1),
即a2=2,
∵a2=2,
∴B2的坐標(biāo)是(2,﹣),
∴A3的坐標(biāo)是(,﹣),
即a3=
∵a3=,
∴B3的坐標(biāo)是(,﹣2),
∴A4的坐標(biāo)是(﹣1,﹣2),
即a4=﹣1,
∵a4=﹣1,
∴B4的坐標(biāo)是(﹣1,1),
∴A5的坐標(biāo)是(2,1),
即a5=2,
…,
∴a1 , a2 , a3 , a4 , a5 , …,每3個(gè)數(shù)一個(gè)循環(huán),分別是﹣1、、2,
∵2015÷3=671…2,
∴a2015是第672個(gè)循環(huán)的第2個(gè)數(shù),
∴a2015=2.
所以答案是:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過(guò)C點(diǎn)的切線CE垂直于弦AD于點(diǎn)E,連OD交AC于點(diǎn)F.
(1)求證:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與直線AB相交于A(﹣3,0),B(0,3)兩點(diǎn).

(1)求這條拋物線的解析式;
(2)設(shè)C是拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);
(3)探究在拋物線上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連接PD,以PD為邊,在PD右側(cè)按如圖方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是(  )

A.8
B.10
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實(shí)數(shù)根,則整數(shù)a的最大值為(  )
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB,垂足為E,且點(diǎn)E是OD的中點(diǎn),⊙O的切線BM與AO的延長(zhǎng)線相交于點(diǎn)M,連接AC,CM.

(1)若AB=4,求的長(zhǎng);(結(jié)果保留π)
(2)求證:四邊形ABMC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)是(5,4),⊙M與y軸相切于點(diǎn)C,與x軸相交于A,B兩點(diǎn).

(1)則點(diǎn)A,B,C的坐標(biāo)分別是A( ,  ),B( ,  ),C(  ,  );
(2)設(shè)經(jīng)過(guò)A,B兩點(diǎn)的拋物線解析式為y=(x﹣5)2+k,它的頂點(diǎn)為E,求證:直線EA與⊙M相切;
(3)在拋物線的對(duì)稱(chēng)軸上,是否存在點(diǎn)P,且點(diǎn)P在x軸的上方,使△PBC是等腰三角形?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次連接△A1B1C1三邊中點(diǎn),得△A2B2C2 , 再依次連接△A2B2C2的三邊中點(diǎn)得△A3B3C3 , …,則△A5B5C5的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(a+1,﹣+1)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案