【題目】在矩形中,的平分線.

1)如圖①,若矩形是正方形,,求的長;

2)如圖②,若,,求的長;

3)如圖②,若,,求的長.

【答案】1;(2;(3

【解析】

1)利用角平分線的性質(zhì)證得,由RtABERtFBE,推出AB=BF,再求得對角線的BD長,設,在中,利用勾股定理構建方程即可求解;

2)同理證得,AB=BF,求得對角線的BD長,設,在中,利用勾股定理構建方程即可求解;

3)同理,設,在中,利用勾股定理構建方程即可求解.

1)過點,垂足為

,即,的平分線,

,

BE公共,

RtABERtFBE

AB=BF=1,

∵四邊形是正方形,

AB=AD=1,

,,

,

EF=FD,

,則,,

∴在中,

,

解得:(負值已舍)

;

2)如圖,過點,垂足為

同理可得:,AB=BF=1,

,

,

,則,,

∴在中,

,

解得:,

;

3)如圖,過點,垂足為

同理可得:,,

,

,

,則,

∴在中,

,

解得:,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義一種對正整數(shù)n的“F”運算:①當n為奇數(shù)時,Fn)=3n+1;②當n為偶數(shù)時,Fn)=(其中k是使Fn)為奇數(shù)的正整數(shù))……,兩種運算交替重復進行,例如,取n24,則:n13,則第2020次“F”運算的結果是(  )

A.1B.4C.2020D.42020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全教育是學校必須開展的一項重要工作.某校為了了解家長和學生參與暑期安全知識學習的情況,進行了網(wǎng)上測試,并在本校學生中隨機抽取部分學生進行調(diào)查.若把參與測試的情況分為類情形:.僅學生自己參與;.家長和學生一起參與;.僅家長自己參與;.家長和學生都未參與.根據(jù)調(diào)查情況,繪制了以下不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

在這次抽樣調(diào)查中,共調(diào)查了 名學生;

補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中類所對應扇形的圓心角的度數(shù);

根據(jù)抽樣調(diào)查結果,估計該校名學生中家長和學生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B的坐標分別為,點C為坐標平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明將兩個直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,恰好為對頂角,,連接,點F是線段上一點.

探究發(fā)現(xiàn):

1)當點F為線段的中點時,連接(如圖(2),小明經(jīng)過探究,得到結論:.你認為此結論是否成立?_________.(填“是”或“否”)

拓展延伸:

2)將(1)中的條件與結論互換,即:若,則點F為線段的中點.請判斷此結論是否成立.若成立,請寫出證明過程;若不成立,請說明理由.

問題解決:

3)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有個填寫運算符號的游戲:在“”中的每個內(nèi),填入,,,中的某一個(可重復使用),然后計算結果.

1)計算:;

2)若,請推算內(nèi)的符號;

3)在“”的內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好疫情宣傳巡查工作,各地積極借助科技手段加大防控力度.如圖,亮亮在外出期間被無人機隔空喊話“戴上口罩,趕緊回家”.據(jù)測量,無人機與亮亮的水平距離是15米,當他抬頭仰視無人機時,仰角恰好為,若亮亮身高1.70米,則無人機距離地面的高度約為________米.(結果精確到0.1米,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師提出如下問題:

如圖,已知,,用尺規(guī)作圖的方法在上取一點,使得.

作法:

1)作線段的垂直平分線.

2)直線于點.

則點就是所求的點.

證明:連接

直線垂直平分線段

(填寫正確的依據(jù))

.

解決下列問題:

1)利用尺規(guī)作圖確定 點的位置;

2)補全證明過程中的依據(jù);

3)如果題干無條件,在線段上點不一定存在,在請畫圖說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC為等邊三角形,以AB邊為腰作等腰RtABD,∠BAD=90,ACBD交于點E,連接CD,過點DDFBCBC延長線于點F

1)如圖1,若DF1,AB= ;AE=

2)如圖2,將CDF繞點D順時針旋轉(zhuǎn)至C1DF1的位置,點C,F的對應點分別為C1F1,當DC1平分∠EDC時,DC1AC交于點M,在AM上取點N,使ANDM,連接DN,求tanNDM的值.

3)如圖3,將CDF繞點D順時針旋轉(zhuǎn)至C1DF1的位置,點C,F的對應點分別為C1F1,連接AF1、BC1,點GBC1的中點,連接AG.求的值;

查看答案和解析>>

同步練習冊答案