【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)①當(dāng)PC∥QB時(shí),OQ= ;
②當(dāng)PC⊥QB時(shí),求OQ的長.
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長.
【答案】(1) 2 (2)2+2 , 2-2 (3)符合條件的點(diǎn)Q共有5個(gè). ①當(dāng)點(diǎn)C在∠AOB內(nèi)部或一邊上時(shí),OQ=2,,2 ②當(dāng)點(diǎn)C在∠AOB的外部時(shí),OQ=+,-.
【解析】試題分析:(1)①由平行線的性質(zhì)得出∠O=∠CPA,由折疊的性質(zhì)得出∠C=∠O,OP=CP,證出∠CPA=∠C,得出OP∥QC,證出四邊形OPCQ是菱形,得出OQ=OP=2cm即可;
②當(dāng)PC⊥QB時(shí),分兩種情況:設(shè)OQ=xcm,證出△OPM是等腰直角三角形,得出OM=,證出△CQM是等腰直角三角形,得出 ,得出方程解方程即可;(ii)同(i)得出:,即可得出結(jié)論;
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),符合條件的點(diǎn)Q共有5個(gè);點(diǎn)C在∠AOB的內(nèi)部或一邊上時(shí),由折疊的性質(zhì)、三角形內(nèi)角和定理以及解直角三角形即可求出OQ的長;點(diǎn)C在∠AOB的外部時(shí),同理求出OQ的長即可;
試題解析:
(1)①當(dāng)PC∥QB時(shí),∠O=∠CPA,
由折疊的性質(zhì)得:∠C=∠O,OP=CP,
∴∠CPA=∠C,
∴OP∥QC,
∴四邊形OPCQ是平行四邊形,
∴四邊形OPCQ是菱形,
∴OQ=OP=2cm;
②當(dāng)PC⊥QB時(shí),分兩種情況:
如圖1所示:設(shè)OQ=xcm,
∵∠O=45°,
∴△OPM是等腰直角三角形,
∴OM= ,
∴QM= ,
由折疊的性質(zhì)得:∠C=∠O=45°,CQ=OQ=x,
∴△CQM是等腰直角三角形,
∴QC= ,
∴ ,
解得: ,
即OQ= ;
(ii)如圖2所示:
同(i)得:OQ=,
綜上所述:當(dāng)PC⊥QB時(shí),OQ的長為 或 ;
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),符合條件的點(diǎn)Q共有5個(gè);
①點(diǎn)C在∠AOB的內(nèi)部時(shí),四邊形OPCQ是菱形,OQ=OP=2cm;
②當(dāng)點(diǎn)C在∠AOB的一邊上時(shí),△OPQ是等腰直角三角形,OQ= 或 ,
③當(dāng)點(diǎn)C在∠AOB的外部時(shí),分兩種情況:
(i)如圖3所示:PM=PQ,則∠PMQ=∠PQM=∠O+∠OPQ,
由折疊的性質(zhì)得:∠OPQ=∠MPQ,
設(shè)∠OPQ=∠MPQ=x,
則∠PMQ=∠PQM=45°+x,
在△OPM中,由三角形內(nèi)角和定理得:45°+x+x+45°+x=180°,
解得:x=30°,
∴∠OPQ=30°,
作QN⊥OP于N,設(shè)ON=a,
∵∠O=45°,
則QN=ON=a,OQ= ,PN= ,
∵ON+PN=OP,
∴a+ ,
解得: ,
∴OQ= ;
(ii)如圖4所示:PQ=MQ,作QN⊥OA于N,
同①得:OQ= ;
綜上所述:當(dāng)折疊后重疊部分為等腰三角形時(shí),OQ的長為2cm或 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),N是AB邊上的一動點(diǎn),將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要在一塊長52 m,寬48 m的矩形綠地上,修建同樣寬的兩條互相垂直的甬路,下面分別是小亮和小穎的設(shè)計(jì)方案.
(1)求小亮設(shè)計(jì)方案中甬路的寬度x;
(2)求小穎設(shè)計(jì)方案中四塊綠地的總面積.(友情提示:小穎設(shè)計(jì)方案中的x與小亮設(shè)計(jì)方案中的x取值相同)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一張折疊型方桌子如圖,若AO=BO=50cm,CO=DO=30cm,將桌子放平后,要使AB距離地面的高為40cm,則兩條桌腿需要叉開的∠AOB應(yīng)為( )
A.60°
B.90°
C.120°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直接想出不等式的解集:
(1)x+3>6的解集 ;(2)2x<12的解集 ;
(3)x-5>0的解集 ;(4)0.5x>5的解集 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用計(jì)算器進(jìn)行模擬實(shí)驗(yàn),估計(jì)6人中有兩人同一個(gè)月過生日的概率,在選定隨機(jī)數(shù)范圍后,每次實(shí)驗(yàn)要產(chǎn)生_____個(gè)隨機(jī)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com