【題目】如圖,AB是⊙O的直徑,射線BC交⊙O于點D,E是劣弧AD上一點,且,過點E作EF⊥BC于點F,延長FE和BA的延長線交與點G.
(1)證明:GF是⊙O的切線;
(2)若AG=6,GE=6,求△GOE的面積.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AD為⊙O的直徑,AD與BC相交于點E,且BE=CE.
(1)請判斷AD與BC的位置關系,并說明理由;
(2)若BC=6,ED=2,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格圖中建立一直角坐標系,一條圓弧經過網格點A、B、C,請在網格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,則⊙D的半徑為 ;扇形DAC的圓心角度數為 ;
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是CD的延長線上一點,BE與AD交于點F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為 ▲ (用a的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+8交x軸于點E,點A為x軸上的一個動點(點A不與點E重合),在直線l上取一點B(點B在x軸上方),使BE=5AE,連接AB,以AB為邊沿順時針方向作正方形ABCD,連結OB,以OB為直徑作⊙P.
(1)當點A在點E右側時.
①若點B剛好落在y軸上,則線段BE的長為 ,點D的坐標為 .
②若點A的坐標為(9,0),求正方形ABCD的邊長.
(2)⊙P與正方形ABCD的邊相切于點B,求點B的坐標.
(3)點Q為⊙P與直線BE的交點,連接CQ,當CQ平分∠BCD時,點B的坐標為 .(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線過點,,與y軸交于點C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD.
(1)用含a的代數式表示點C的坐標.
(2)如圖1,若點D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.
(3)設的面積為S1,的面積為S2,若,求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某網店銷售一種兒童玩具,進價為每件30元,物價部門規(guī)定每件兒童玩具的銷售利潤不高于進價的.在銷售過程中發(fā)現,這種兒童玩具每天的銷售量(件與銷售單價(元滿足一次函數關系.當銷售單價為35元時,每天的銷售量為350件;當銷售單價為40元時,每天的銷售量為300件.
(1)求與之間的函數關系式.
(2)當銷售單價為多少時,該網店銷售這種兒童玩具每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用適當的方法解方程。
(1)4(x-3) =36
(2)x2-4x+1=0.
(3)-7x+6=0
(4)
(5)(y-1)2+2y(1-y)=0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com