【題目】在△DEF中,DE=DF,點(diǎn)B在EF邊上,且∠EBD=60°,C是射線BD上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.
(1)當(dāng)點(diǎn)C在線段BD上時(shí),
①若點(diǎn)C與點(diǎn)D重合,請根據(jù)題意補(bǔ)全圖1,并直接寫出線段AE與BF的數(shù)量關(guān)系為________;
②如圖2,若點(diǎn)C不與點(diǎn)D重合,請證明AE=BF+CD;
(2)當(dāng)點(diǎn)C在線段BD的延長線上時(shí),用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.
【答案】(1)①圖見解析;②證明見解析;(2)AE=BF-CD(或AE=CD-BF.)
【解析】
試題
(1)①按要求補(bǔ)全圖形如圖3,由已知條件易證△ABD是等邊三角形,再證△DBE≌△DAF,可得BE=AF,從而可得AE=BF;②如圖2,在BE上截取BG=BD,連接DG,易證△GBD、△ABC都是等邊三角形,再證△DGE≌△DBF即可得到所求結(jié)論;
(2)如圖5、圖6,當(dāng)點(diǎn)C在BD延長線上時(shí),需分點(diǎn)A在線段BE上和線段BE的延長線上兩種情況分析討論,由已知條件易證△CAB和△DGB都是等邊三角形,由此易得DC=AG;再證△DGE≌△DBF可得DG=BF,即可得到DC、AE、BF間的數(shù)量關(guān)系.
(1)①補(bǔ)全圖形如圖3所示:
∵BA=BC,∠EBD=60°,
∴△ABD為等邊三角形,
∴∠DAB=∠DBA=60°,DB=DA,
∵DE=DF,
∴∠E=∠F,
∴△DBE≌△DAF,
∴BE=AF,
∴BE-AB=AF-AB,即AE=BF;
②如圖4,在BE上截取BG=BD,連接DG
∵∠EBD=60°,BG=BD,
∴△GBD是等邊三角形.
同理,△ABC也是等邊三角形.
∴AG=CD.∵DE=DF,
∴∠E=∠F.
又∵∠DGB=∠DBG=60°,
∴∠DGE=∠DBF=120°.
∴△DGE≌△DBF,
∴GE=BF,
∴AE=BF+CD.
(2)如圖5、圖6,當(dāng)點(diǎn)C在BD延長線上時(shí),需分點(diǎn)A在線段BE上和線段BE的延長線上兩種情況分析討論,
①當(dāng)點(diǎn)A在線段BE上時(shí),在線段BE上截取BG=BD,連接DG,
∵∠DBE=60°,BA=BC,BG=BD,
∴△CBA、△DBG都是等邊三角形,BA-BG=BC-BD,
∴∠DGB=∠DBG=60°,AG=CD,
∴∠DGE=∠DBF,
∵DE=DF,
∴∠E=∠F,
∴△DGE≌△DBF,
∴GE=BF,
∴AE=GE-AG=BF-CD;
②同理,如圖6,可得AE=CD-BF;
綜上所述,當(dāng)點(diǎn)C在線段BD的延長線上時(shí),AE=BF-CD(或AE=CD-BF).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知非Rt△ABC中,∠A=45°,高BD、CE所在的直線交于點(diǎn)H,畫出圖形并求出∠BHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的統(tǒng)計(jì)圖表(表1,圖8.1,圖8.2).
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計(jì)表中的m= ,n= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中“E”類所對應(yīng)的圓心角是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的箱子里,裝有黃、白、黑各一個(gè)球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機(jī)從箱子里取出1個(gè)球,則取出黃球的概率是多少?
(2)隨機(jī)從箱子里取出1個(gè)球,放回?cái)噭蛟偃〉诙䝼(gè)球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結(jié)果,并求兩次取出的都是白色球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).直線y=kx+b與拋物線y=mx2﹣ x+n同時(shí)經(jīng)過A(0,3)、B(4,0).
(1)求m,n的值.
(2)點(diǎn)M是二次函數(shù)圖象上一點(diǎn),(點(diǎn)M在AB下方),過M作MN⊥x軸,與AB交于點(diǎn)N,與x軸交于點(diǎn)Q.求MN的最大值.
(3)在(2)的條件下,是否存在點(diǎn)N,使△AOB和△NOQ相似?若存在,求出N點(diǎn)坐標(biāo),不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)閱讀理解:
我們把滿足某種條件的所有點(diǎn)所組成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡.
例如:角的平分線是到角的兩邊距離相等的點(diǎn)的軌跡.
問題:如圖1,已知EF為△ABC的中位線,M是邊BC上一動(dòng)點(diǎn),連接AM交EF于點(diǎn)P,那么動(dòng)點(diǎn)P為線段AM中點(diǎn).
理由:∵線段EF為△ABC的中位線,∴EF∥BC,
由平行線分線段成比例得:動(dòng)點(diǎn)P為線段AM中點(diǎn).
由此你得到動(dòng)點(diǎn)P的運(yùn)動(dòng)軌跡是: .
(2)知識應(yīng)用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動(dòng)點(diǎn),連結(jié)EF;若AF=BE,且等邊△ABC的邊長為8,求線段EF中點(diǎn)Q的運(yùn)動(dòng)軌跡的長.
(3)拓展提高:
如圖3,P為線段AB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),在線段AB的同側(cè)分別作等邊△APC和等邊△PBD,連結(jié)AD、BC,交點(diǎn)為Q.
①求∠AQB的度數(shù);
②若AB=6,求動(dòng)點(diǎn)Q運(yùn)動(dòng)軌跡的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com