【題目】如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。
(1)如圖1,若△ABC為直角三角形,求的值;
(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標(biāo);
(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.
【答案】(1);(2)點P的坐標(biāo)為 ;(3).
【解析】
(1)利用三角形相似可求AOOB,再由一元二次方程根與系數(shù)關(guān)系求AOOB構(gòu)造方程求n;
(2)求出B、C坐標(biāo),設(shè)出點Q坐標(biāo),利用平行四邊形對角線互相平分性質(zhì),分類討論點P坐標(biāo),分別代入拋物線解析式,求出Q點坐標(biāo);
(3)設(shè)出點D坐標(biāo)(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點B坐標(biāo),進(jìn)而找到b與a關(guān)系,代入拋物線求a、n即可.
(1)若△ABC為直角三角形
∴△AOC∽△COB
∴OC2=AOOB
當(dāng)y=0時,0=x2-x-n
由一元二次方程根與系數(shù)關(guān)系
-OAOB=OC2
n2==2n
解得n=0(舍去)或n=2
∴拋物線解析式為y=;
(2)由(1)當(dāng)=0時
解得x1=-1,x2=4
∴OA=1,OB=4
∴B(4,0),C(0,-2)
∵拋物線對稱軸為直線x=-=
∴設(shè)點Q坐標(biāo)為(,b)
由平行四邊形性質(zhì)可知
當(dāng)BQ、CP為平行四邊形對角線時,點P坐標(biāo)為(,b+2)
代入y=x2-x-2
解得b=,則P點坐標(biāo)為(,)
當(dāng)CQ、PB為為平行四邊形對角線時,點P坐標(biāo)為(-,b-2)
代入y=x2-x-2
解得b=,則P坐標(biāo)為(-,)
綜上點P坐標(biāo)為(,),(-,);
(3)設(shè)點D坐標(biāo)為(a,b)
∵AE:ED=1:4
則OE=b,OA=a
∵AD∥AB
∴△AEO∽△BCO
∵OC=n
∴
∴OB=
由一元二次方程根與系數(shù)關(guān)系得,
∴b=a2
將點A(-a,0),D(a,a2)代入y=x2-x-n
解得a=6或a=0(舍去)
則n= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)若∠BAC=50°,求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)試判斷線段EF、BF與AC三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,點P從點A開始沿AB邊向點B以1 cm/s的速度移動,同時點Q從點B開始沿BC向點C以2cm/s的速度移動.當(dāng)一個點到達(dá)終點時另一點也隨之停止運(yùn)動,運(yùn)動時間為x秒(x>0).
(1)求幾秒后,PQ的長度等于5 cm.
(2)運(yùn)動過程中,△PQB的面積能否等于8 cm2?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標(biāo);
(3)當(dāng)點P運(yùn)動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.
(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點為正半軸上一動點, 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點.
(1)求證:≌;
(2)在點的運(yùn)動過程中,的度數(shù)是否會變化?如果不變,請求出的度數(shù);如果變化,請說明理由.
(3)當(dāng)點運(yùn)動到什么位置時,以為頂點的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點為直線上一動點(點不與點重合),以為腰作等腰直角,使,連接.
(1)觀察猜想
如圖1,當(dāng)點在線段上時,
①與的位置關(guān)系為__________;
②之間的數(shù)量關(guān)系為___________(提示:可證)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點在線段的延長線上時,(1)中的①、②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當(dāng)點在線段的延長線時,將沿線段翻折,使點與點重合,連接,若,請直接寫出線段的長.(提示:做于,做于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為創(chuàng)建“書香校園”,購置了一批圖書,已知購買科普類圖書花費(fèi)10000元,購買文學(xué)類圖書花費(fèi)9000元,其中科普類圖書平均每本的價格比文學(xué)類圖書平均每本的價格貴5元,且購買科普類圖書的數(shù)量與購買文學(xué)類圖書的數(shù)量相等.求科普類圖書平均每本的價格.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com