【題目】如圖,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一條線段PQ=AB,P、Q兩點分別在AC上和過A點且垂直于AC的射線AQ上運動,問P點運動到AC上什么位置時△ABC才能和△APQ全等.
【答案】當點P與點C重合時,△ABC才能和△APQ全等
【解析】
試題本題要分情況討論:①Rt△APQ≌Rt△CBA,此時AP=BC=5cm,可據此求出P點的位置.
②Rt△QAP≌Rt△BCA,此時AP=AC,P、C重合.
解:根據三角形全等的判定方法HL可知:
①當P運動到AP=BC時,
∵∠C=∠QAP=90°,
在Rt△ABC與Rt△QPA中,
∴Rt△ABC≌Rt△QPA(HL),
即AP=BC=5cm;
②當P運動到與C點重合時,AP=AC,
在Rt△ABC與Rt△QPA中,
,
∴Rt△QAP≌Rt△BCA(HL),
即AP=AC=10cm,
∴當點P與點C重合時,△ABC才能和△APQ全等.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=50°時,求∠DEF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,一次函數y=kx+b(k、b為常數,k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數y=(n為常數且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂直為D,若OB=2OA=3OD=6.
(1)求一次函數與反比例函數的解析式;
(2)求兩函數圖象的另一個交點坐標;
(3)直接寫出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】證明命題“角平分線上的點到角兩邊的距離相等”,要根據題意,畫出圖形,并用符號表示已知求證,寫出證明過程,下面是小明同學根據題意畫出的圖形,并寫出了不完整的已知和求證.
(1)已知:如圖,OC是∠AOB的角平分線,點P在OC上, , .求證: .(請你補全已知和求證)
(2)寫出證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分10分)閱讀下列材料:
(1)關于x的方程x2-3x+1=0(x≠0)方程兩邊同時乘以得: 即, ,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根據以上材料,解答下列問題:
(1)x2-4x+1=0(x≠0),則= ______ , = ______ , = ______ ;
(2)2x2-7x+2=0(x≠0),求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為 20 元/千克,售價不低于 20 元/千克,且不超過 32 元/千克,根據銷售情況,發(fā)現該水果一天的銷售量 y(千克)與該天的售價 x(元/千克)滿足如下表所示的一次函數關系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為 23.5 元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數量不多于B型節(jié)能燈數量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:銳角△ABC中,∠C=2∠B,AD是高,求證:AC+CD=BD.
線段和差,通常用截長或補短法證明,下面是甲、乙兩位同學的思路,請你按他們的思路,給出一種證明.
甲:截長法,在DB上截取DE=DC,連AE,去證BE=AC;
乙:補短法,延長DC到E,使CE=CA,連接AE,去證DB=DE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解下列方程: (1)x2-49=0 (2)3x2-7x=0 (3)(2x-1)2=9
(4)x2+3x-4=0 (5)(x+4)2=5(x+4) (6)x2+4x=2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com