【題目】如圖,四邊形ABCD是正方形,點(diǎn)E、F分別在線段BC、DC上,線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與線段AF重合.若,則旋轉(zhuǎn)的角度是( )
A.B.
C.D.
【答案】A
【解析】
根據(jù)正方形的性質(zhì)可得AB=AD,∠B=∠D=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得AE=AF,然后利用“HL”證明Rt△ABE和Rt△ADF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DAF=∠BAE,然后求出∠EAF=10°,再根據(jù)旋轉(zhuǎn)的定義可得旋轉(zhuǎn)角的度數(shù).
解:∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與線段AF重合,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴∠DAF=∠BAE,
∵∠BAE=40°,
∴∠DAF=40°,
∴∠EAF=90°-∠BAE-∠DAF=90°-40°-40°=10°,
∴旋轉(zhuǎn)角為10°.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:直線AB與雙曲線y=點(diǎn)交于A、B兩點(diǎn),直線AB與x、y坐標(biāo)軸分別交于C、D兩點(diǎn),連接OA,若OA=2,tan∠AOC=,B(3,m)
(1)求一次函數(shù)與反比例函數(shù)解析式;
(2)若點(diǎn)F是點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn),求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是直徑上的一點(diǎn),過(guò)作直線,分別交于,兩點(diǎn),連接,并將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,分別交和于,,連接.
(Ⅰ)求證:;
(Ⅱ)若點(diǎn)在直徑上運(yùn)動(dòng)(不與點(diǎn),重合),其它條件不變,請(qǐng)問(wèn)是否為定值?若是,請(qǐng)求出其值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)共有80名同學(xué)參與數(shù)學(xué)科托底訓(xùn)練.其中(1)班30人,(2)班25人,(3)班25人,呂老師在托底訓(xùn)練后對(duì)這些同學(xué)進(jìn)行測(cè)試,并對(duì)測(cè)試成績(jī)進(jìn)行整理,得到下面統(tǒng)計(jì)圖表.
(1)表格中的m落在________組;(填序號(hào))
①40≤x<50, ②50≤x<60, ③60≤x<70,
④70≤x<80, ⑤80≤x<90, ⑥90≤x≤100.
(2)求這80名同學(xué)的平均成績(jī);
(3)在本次測(cè)試中,(2)班小穎同學(xué)的成績(jī)是70分,(3)班小榕同學(xué)的成績(jī)是74分,這兩位同學(xué)成績(jī)?cè)谧约核诎嗉?jí)托底同學(xué)中的排名,誰(shuí)更靠前?請(qǐng)簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,點(diǎn),分別是的中點(diǎn),分別是的中點(diǎn),滿足什么條件時(shí),四邊形是菱形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半圓O,點(diǎn)C、D在弧AB上,連接AD、BD、CD,∠BDC+2∠ABD=90°.
(1)如圖1,求證:DA=DC;
(2)如圖2,作OE⊥BD交半圓O于點(diǎn)E,連接AE交BD于點(diǎn)F,連接AC,求證:∠DFA=∠DAC+∠DAE;
(3)如圖3,在(2)的條件下,設(shè)AC交BD于點(diǎn)G,FG=1,AG=5,求半圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0),經(jīng)過(guò)點(diǎn)(1.0),對(duì)稱軸l如圖所示,若M=a+b﹣c,N=2a﹣b,P=a+c,則M,N,P中,值小于0的數(shù)有( 。﹤(gè).
A.2B.1C.0D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的邊FG在BC上,頂點(diǎn)D,E分別在AB,AC上.
(1)如圖1,過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,交DE于點(diǎn)K,求正方形DEFG的邊長(zhǎng);
(2)如圖2,在BE上取點(diǎn)M,作MN⊥BC于點(diǎn)N,MQ∥DE交AB于點(diǎn)Q,QP⊥BC于點(diǎn)P,求證:四邊形MNPQ是正方形;
(3)如圖3,在BE上取點(diǎn)R,使RE=FE,連結(jié)RG,RF,若tan∠EBF=.求證:∠GRF=90°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com