【題目】如圖,點(diǎn)G是△ABC的重心,下列結(jié)論:① ;② ;③△EDG∽△CGB;④ .其中正確的個(gè)數(shù)有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】解:∵點(diǎn)G是△ABC的重心,
∴D是AC的中點(diǎn),E是AB的中點(diǎn),
∵DE∥BC,DE= BC,
∴△AED∽△ABC,
= ,故②錯(cuò)誤;
∵DE∥BC,
∴∠DEG=∠BCG,∠EDG=∠CBG,
∴△EDG∽△CGB,
= = ,故①③正確;
∵點(diǎn)G是△ABC的重心,
∴DG:BD=1:3,
∵AD=DC,
∴SABD= SABC ,
=( 2= ,
∴SBDE= SABC ,
∴SDEG= SBDE= SABC
∴S四邊形AEGD=SAED+SDGE= SABC+ SABC= SABC ,
,故④正確;
故正確的有①③④,
故選C.
【考點(diǎn)精析】本題主要考查了相似三角形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實(shí)數(shù)根是(
A.x1=1,x2=﹣1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E在對(duì)角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為(
A.1
B.
C.4﹣2
D.3 ﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,△COD關(guān)于CD的對(duì)稱圖形為△CED.

(1)求證:四邊形OCED是菱形;
(2)連接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若點(diǎn)P為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A重合),連接OP,一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以1cm/s的速度沿線段OP勻速運(yùn)動(dòng)到點(diǎn)P,再以1.5cm/s的速度沿線段PA勻速運(yùn)動(dòng)到點(diǎn)A,到達(dá)點(diǎn)A后停止運(yùn)動(dòng),當(dāng)點(diǎn)Q沿上述路線運(yùn)動(dòng)到點(diǎn)A所需要的時(shí)間最短時(shí),求AP的長和點(diǎn)Q走完全程所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、C、D在同一直線上,△ABC和△DCE都是等邊三角形,且在直線BD的同側(cè),BE交AD于F,BE交AC于M,AD交CE于N.

(1)求證:AD=BE;
(2)求證:△ABF∽△ADB。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC與Rt△ECD中,∠ACB=∠ECD=90°,CD為Rt△ABC斜邊上的中線,且ED∥BC.

(1)求證:△ABC∽△EDC;
(2)若CE=3,CD=4,求CB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠C為直角,AC=5,BC=12,在Rt△ABC內(nèi)從左往右疊放邊長為1的正方形小紙片,第一層小紙片的一條邊都在AB上,依次這樣往上疊放上去,則最多能疊放個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張正方形紙板的邊長為2cm,將它剪去4個(gè)全等的直角三角形(圖中陰影部分).設(shè)AE=BF=CG=DH=xcm,四邊形EFGH的面積為ycm2 ,

(1)求y關(guān)于x的函數(shù)表達(dá)式和自變量x的取值范圍;
(2)求四邊形EFGH的面積為3cm2時(shí)的x值;
(3)四邊形EFGH的面積可以為1.5cm2嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y1=﹣x+4的圖象與函數(shù)y2= (x>0)的圖象交于A(m,1),B(1,n)兩點(diǎn).
(1)求k,m,n的值;
(2)利用圖象寫出當(dāng)x≥1時(shí),y1和y2的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案