【題目】如圖:在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)將向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到,請畫出(點(diǎn),,的對應(yīng)點(diǎn)分別為,,)
(2)請畫出與關(guān)于軸對稱的(點(diǎn),,的對應(yīng)點(diǎn)分別為,,)
(3)請寫出,的坐標(biāo)
【答案】(1)作圖見解析;(2)作圖見解析;(3);.
【解析】
(1)利用點(diǎn)平移的坐標(biāo)變換特征得出、、的位置,然后描點(diǎn)連線即可;
(2)利用關(guān)于y軸對稱點(diǎn)的性質(zhì)得出、、的位置,然后描點(diǎn)連線即可;
(3)利用點(diǎn)平移的坐標(biāo)變換特征和關(guān)于y軸對稱點(diǎn)的性質(zhì)即可寫出,的坐標(biāo).
(1)如圖,為所作;
(2)如圖,為所作;
(3)點(diǎn) 向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到;
點(diǎn) 關(guān)于y軸對稱點(diǎn);
故答案為:;;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD的邊BC的延長線上取一點(diǎn)E,在直線BC的同側(cè)作一個(gè)以CE為底的等腰△CEF,且滿足∠B+∠F=180°,則稱三角形CEF為四邊形ABCD的“伴隨三角形”.
(1)如圖1,若△CEF是正方形ABCD的“伴隨三角形”:
①連接AC,則∠ACF= ;
②若CE=2BC,連接AE交CF于H,求證:H是CF的中點(diǎn);
(2)如圖2,若△CEF是菱形ABCD的“伴隨三角形”,∠B=60°,M是線段AE的中點(diǎn),連接DM、FM,猜想并證明DM與FM的位置與數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)與邊分別交于點(diǎn),如果折疊后與均為等腰三角形,那么__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上.
(1)求證:△AEF∽△ABC;
(2)求這個(gè)正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個(gè)矩形的最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC的邊BC在射線BD上,動(dòng)點(diǎn)P在等邊△ABC的BC邊上(點(diǎn)P與BC不重合),連接AP.
(1)如圖1,當(dāng)點(diǎn)P是BC的中點(diǎn)時(shí),過點(diǎn)P作于E,并延長PE至N點(diǎn),使得.①若,試求出AP的長度;
②連接CN,求證.
(2)如圖2,若點(diǎn)M是△ABC的外角的角平分線上的一點(diǎn),且,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com