【題目】如圖:在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.

1)將向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到,請畫出(點(diǎn),,的對應(yīng)點(diǎn)分別為,,

2)請畫出與關(guān)于軸對稱的(點(diǎn),,的對應(yīng)點(diǎn)分別為,

3)請寫出,的坐標(biāo)

【答案】1)作圖見解析;(2)作圖見解析;(3;.

【解析】

1)利用點(diǎn)平移的坐標(biāo)變換特征得出、的位置,然后描點(diǎn)連線即可;

2)利用關(guān)于y軸對稱點(diǎn)的性質(zhì)得出、、的位置,然后描點(diǎn)連線即可;

3)利用點(diǎn)平移的坐標(biāo)變換特征和關(guān)于y軸對稱點(diǎn)的性質(zhì)即可寫出,的坐標(biāo).

1)如圖,為所作;

2)如圖,為所作;

3)點(diǎn) 向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到

點(diǎn) 關(guān)于y軸對稱點(diǎn);

故答案為:;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD的邊BC的延長線上取一點(diǎn)E,在直線BC的同側(cè)作一個(gè)以CE為底的等腰CEF,且滿足∠B+F180°,則稱三角形CEF為四邊形ABCD伴隨三角形

1)如圖1,若CEF是正方形ABCD伴隨三角

①連接AC,則∠ACF   ;

②若CE2BC,連接AECFH,求證:HCF的中點(diǎn);

2)如圖2,若CEF是菱形ABCD伴隨三角形,∠B60°M是線段AE的中點(diǎn),連接DM、FM,猜想并證明DMFM的位置與數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,

1)觀察規(guī)形圖,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;

2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:

①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)BC,∠A=40°,則∠ABX+ACX等于多少度;

②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

③如圖4,∠ABD,∠ACD10等分線相交于點(diǎn)G1、G2、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,, ,,將沿折疊,使點(diǎn)落在直角邊上的點(diǎn)處,設(shè)邊分別交于點(diǎn),如果折疊后均為等腰三角形,那么__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AD是BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊BEF,連接CF.

(1)求證:AE=CF;

(2)求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上.

1)求證:△AEF∽△ABC

2)求這個(gè)正方形零件的邊長;

3)如果把它加工成矩形零件如圖2,問這個(gè)矩形的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于、兩點(diǎn),,交雙曲線點(diǎn),且軸于點(diǎn),,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊ABC的邊BC在射線BD,動(dòng)點(diǎn)P在等邊ABCBC邊上(點(diǎn)PBC不重合),連接AP.

1)如圖1,當(dāng)點(diǎn)PBC的中點(diǎn)時(shí),過點(diǎn)PE,并延長PEN點(diǎn),使得.①若,試求出AP的長度;

②連接CN,求證.

2)如圖2,若點(diǎn)MABC的外角的角平分線上的一點(diǎn),且,求證:.

查看答案和解析>>

同步練習(xí)冊答案