【題目】如圖,△ABC中,E是AC上一點(diǎn),且AE=AB,∠EBC=∠BAC,以AB為直徑的⊙O交AC于點(diǎn)D,交EB于點(diǎn)F.
(1)求證:BC與⊙O相切;
(2)若AB=8,sin∠EBC=,求AC的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)
【解析】
試題分析:(1)首先連接AF,由AB為直徑,根據(jù)圓周角定理,可得∠AFB=90°,又由AE=AB,∠EBC=∠BAC,根據(jù)等腰三角形的性質(zhì),可得∠BAF=∠EBC,繼而證得BC與⊙O相切;
(2)首先過(guò)E作EG⊥BC于點(diǎn)G,由三角函數(shù)的性質(zhì),可求得BF的長(zhǎng),易證得△CEG∽△CAB,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案.
試題解析:(1)連接AF.
∵AB為直徑,
∴∠AFB=90°.
∵AE=AB,
∴△ABE為等腰三角形.
∴∠BAF=∠BAC.
∵∠EBC=∠BAC,
∴∠BAF=∠EBC,
∴∠FAB+∠FBA=∠EBC+∠FBA=90°.
∴∠ABC=90°.
即AB⊥BC,
∴BC與⊙O相切.
(2)過(guò)E作EG⊥BC于點(diǎn)G,
∵∠BAF=∠EBC,
∴sin∠BAF=sin∠EBC=.
在△AFB中,∠AFB=90°,
∵AB=8,
∴BF=ABsin∠BAF=8×=2,
∴BE=2BF=4.
在△EGB中,∠EGB=90°,
∴EG=BEsin∠EBC=4×=1,
∵EG⊥BC,AB⊥BC,
∴EG∥AB,
∴△CEG∽△CAB,
∴ .
∴ ,
∴CE=,
∴AC=AE+CE=8+=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)春南溪濕地公園總占地面積約為3 100 000平方米.3 100 000這個(gè)數(shù)用科學(xué)記數(shù)法表示為( 。
A. 3.1×105 B. 3.1×106 C. O.31×107 D. 3.1×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=20°,CD是∠BCA的平分線,△CDA中,DE是CA邊上的高,又有∠EDA=∠CDB,求∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)﹣9+(+ )﹣(﹣12)+(﹣5)+(﹣ )
(2)(1﹣1 ﹣ + )×(﹣24)
(3)﹣ + ÷(﹣2)×(﹣ )
(4)﹣14﹣(1﹣ )÷3×|3﹣(﹣3)2|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年我區(qū)教育部門免費(fèi)為本區(qū)義務(wù)教育階段中小學(xué)生提供校服投入3600萬(wàn)元,3600用科學(xué)記數(shù)法表示為( 。
A. 36×102B. 36×103C. 3.6×104D. 3.6×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)二班45名同學(xué)在學(xué)校舉行的“愛(ài)心涌動(dòng)校園”募捐活動(dòng)中捐款情況如下表:
捐款數(shù)(元) | 10 | 20 | 30 | 40 | 50 |
捐款人數(shù)(人) | 8 | 17 | 16 | 2 | 2 |
則全班捐款的45個(gè)數(shù)據(jù)眾數(shù)和中位數(shù)是( 。
A. 20元,30元B. 50元,30元C. 50元,20元D. 20元,20元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
油桶制造廠的某車間主要負(fù)責(zé)生產(chǎn)制造油桶用的圓形鐵片和長(zhǎng)方形鐵片,該車間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長(zhǎng)方形鐵片80片.如圖,一個(gè)油桶由兩個(gè)圓形鐵片和一個(gè)長(zhǎng)方形鐵片相配套.生產(chǎn)圓形鐵片和長(zhǎng)方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2+4x+1可以由拋物線y=x2平移得到,則下列平移過(guò)程正確的是( )
A.先向左平移2個(gè)單位,再向上平移3個(gè)單位
B.先向左平移2個(gè)單位,再向下平移3個(gè)單位
C.先向右平移2個(gè)單位,再向下平移3個(gè)單位
D.先向右平移2個(gè)單位,再向上平移3個(gè)單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com