【題目】如圖,在△ABC中,AD是△ABC的中線,tanB= ,cosC= ,AC=2 ,求sin∠ADC的值.
【答案】解:過點A作AH⊥BC交BC與點H,
∵cosC= ,AC=2 ,
∴AH=2,
∵tanB= ,
∴BH=4,
∵AD是△ABC的中線,
∴DH=1,
∴AD= = = ,
∴sin∠ADC= = = .
【解析】過點A作AH⊥BC交BC與點H,根據cosC=及余弦的定義得出AH的值,然后再根據正切的定義及tanB= ,求出BH的值,根據中線的定義得出DH的值,根據勾股定理得出AD的值,從而可以求出sin∠ADC的值。
【考點精析】解答此題的關鍵在于理解三角形的“三線”的相關知識,掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內部,是三角形內切圓的圓心,稱為內心);2、三角形中線的三條中線線交于一點(交點在三角形內部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內,以及對銳角三角函數的定義的理解,了解銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數.
科目:初中數學 來源: 題型:
【題目】如圖,表示小王騎自行車和小李騎摩托車者沿相同的路線由甲地到乙地行駛過程的函數圖象,兩地相距80千米,請根據圖象解決下列問題:
(1)哪一個人出發(fā)早?早多長時間?哪一個人早到達目的地?早多長時間?
(2)求出兩個人在途中行駛的速度是多少?
(3)分別求出表示自行車和摩托車行駛過程的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.
(1)若∠A=40°,求∠BCD的度數;
(2)若AE=5,△BCD的周長17,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 如圖,數軸上點A對應的有理數為10,點P以每秒1個單位長度的速度從點A出發(fā),點Q以每秒3個單位長度的速度從原點O出發(fā),且P、Q兩點同時向數軸正方向運動,設運動時間為t秒.
(1)當t=2時,P,Q兩點對應的有理數分別是 , ,PQ= ;
(2)當PQ=8時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D,E分別是三角形ABC的邊AB,BC上的點,DE∥AC,點F在DE的延長線上,且∠DFC=∠A.
(1)求證:AB∥CF;
(2)若∠ACF比∠BDE大40°,求∠BDE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將直角三角形ABC繞其直角頂點C順時針旋轉至△A′B′C′,已知AC=8,BC=6,點M,M′分別是AB,A′B′的中點,則MM′的長是( )
A. 5 B. 4 C. 3 D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)下面是李老師帶領同學們探索的近似值的過程,請你仔細閱讀并補充完整:我們知道,面積是2的正方形的邊長是,且>1,則設=1+x(0<x<1),可畫出如圖所示的示意圖.由各部分面積之和等于總面積.可列方程為:x2+ +1=2,∵0<x<1,∴認為x2是個較為接近于0的數,令x2≈0,因此省略x2后,得到方程: ,解得,x= ,即=1+x≈ .
(2)請仿照(1)中的方法,若設=1.7+y(0<y<1),求的近似值(要求畫出示意圖,標明數據,并將的近似值精確到千分位)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為深化課程改革,某校為學生開設了形式多樣的社團課程,為了解部分社團課程在學生中最受歡迎的程度,學校隨機抽取七年級名學生進行調查,從:文學鑒賞,:科學探究,:文史天地,:趣味數學四門課程中選出你喜歡的課程(被調查的每名學生必選且只能選擇一門課程),并將調查結果制成如下兩幅不完整的統計圖:
(1)_________,_________;
(2)扇形統計圖中,“”所對應的扇形的圓心角度數是________度;
(3)請根據以上信息直接在答題卡中補全條形統計圖.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com