【題目】如圖,在直角坐標(biāo)系中,各點(diǎn)的坐標(biāo)分別為,,

1)若把向上平移2個單位,再向左平移1個單位得到,寫出的坐標(biāo),并在圖中畫出平移后圖形.

2)求出三角形的面積.

【答案】1A′-3,0)、B′23),C′-1,4);圖形見解析;(27

【解析】

1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)AB、C平移后的對應(yīng)點(diǎn)A′B′C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A′、B′、C′的坐標(biāo);
2)利用ABC所在的矩形的面積減去四周三個直角三角形的面積,列式計算即可得解.

1A′B′C′如圖所示:A′-3,0)、B′2,3),C′-1,4);

2ABC的面積=5×4-×2×4-×5×3-×1×3,
=20-4-7.5-1.5,
=20-13,
=7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若非零數(shù)a,b互為相反數(shù),c,d互為倒數(shù),;

1)求的值;(2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,已知點(diǎn)在線段上,且,,點(diǎn)、分別是、的中點(diǎn),求線段的長度;

(2)若點(diǎn)是線段上任意一點(diǎn),且,,點(diǎn)分別是、的中點(diǎn),請直接寫出線段的長度;(結(jié)果用含、的代數(shù)式表示)

(3)在(2)中,把點(diǎn)是線段上任意一點(diǎn)改為:點(diǎn)是直線上任意一點(diǎn),其他條件不變,則線段的長度會變化嗎?若有變化,求出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動時,折痕的端點(diǎn)P、Q也隨之移動;

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點(diǎn)E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個分式能化成一個整式與一個分子為常數(shù)的分式的和的形式,則稱這個分式為快樂分式”.如:,則 快樂分式

(1)下列式子中,屬于快樂分式的是 (填序號);

,② ,③ ,④ .

2)將快樂分式化成一個整式與一個分子為常數(shù)的分式的和的形式為: = .

3)應(yīng)用:先化簡 ,并求x取什么整數(shù)時,該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖形中每一小格正方形的邊長為1,已知△ABC

1AC的長等于   .(結(jié)果保留根號

2)將△ABC向右平移2個單位得到△A′B′C′A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo)是   ;

3)畫出將△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C1并寫出A點(diǎn)對應(yīng)點(diǎn)A1的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BECD,交于點(diǎn)F

(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;

(2)求證:過點(diǎn)A、F的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊長方形的一邊,使點(diǎn)落在邊的點(diǎn)處,已知,

1)求的長;

2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OP是∠BOC的平分線,EOAB于點(diǎn)O,F(xiàn)OCD于點(diǎn)O.

(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;______________.

(2)如果∠AOD=40°,那么:

①根據(jù)__________,可得∠BOC=________;

②求∠POF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案