【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)證明:∠E=∠C;
(2)若∠E=55°,求∠BDF的度數(shù);
(3)設DE交AB于點G,若DF=4,cosB= ,E是 的中點,求EGED的值.

【答案】
(1)證明:連接AD,

∵AB是⊙O的直徑,

∴∠ADB=90°,即AD⊥BC,

∵CD=BD,

∴AD垂直平分BC,

∴AB=AC,

∴∠B=∠C,

又∵∠B=∠E,

∴∠E=∠C;


(2)解:∵四邊形AEDF是⊙O的內接四邊形,

∴∠AFD=180°﹣∠E,

又∵∠CFD=180°﹣∠AFD,

∴∠CFD=∠E=55°,

又∵∠E=∠C=55°,

∴∠BDF=∠C+∠CFD=110°;


(3)解:連接OE,

∵∠CFD=∠E=∠C,

∴FD=CD=BD=4,

在Rt△ABD中,cosB= ,BD=4,

∴AB=6,

∵E是 的中點,AB是⊙O的直徑,

∴∠AOE=90°,

∵AO=OE=3,

∴AE=3 ,

∵E是 的中點,

∴∠ADE=∠EAB,

∴△AEG∽△DEA,

= ,

即EGED=AE2=18.


【解析】(1)直接利用圓周角定理得出AD⊥BC,再利用線段垂直平分線的性質得出AB=AC,即可得出∠E=∠C;(2)利用圓內接四邊形的性質得出∠AFD=180°﹣∠E,進而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根據(jù)cosB= ,得出AB的長,即可求出AE的長,再判斷△AEG∽△DEA,求出EGED的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= k x 的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.

(1)求k的值;
(2)利用圖象求出不等式2x> 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點,F(xiàn)是AC延長線上一點.

(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結論(請先補全圖形,再解答);
(3)若ED=EF,ED與EF垂直嗎?若垂直給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD∥BC,AC=8,BD=6,.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P點的坐標為(3,2),過P點的直線AB分別交x軸和y軸的正半軸于A,B兩點,作PM⊥x軸于M點,作PN⊥y軸于N點,若△PAM的面積與△PBN的面積的比為 ,則直線AB的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x的頂點為A,直線y=x﹣2與拋物線交于B,C兩點.


(1)求A,B,C三點的坐標;
(2)作CD⊥x軸于點D,求證:△ODC∽△ABC;

(3)若點P為拋物線上的一個動點,過點P作PM⊥x軸于點M,則是否還存在除C點外的其他位置的點,使以O,P,M為頂點的三角形與△ABC相似?若存在,請求出這樣的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售甲、乙兩種糖果,購買3千克甲種糖果和1千克乙種糖果共需44元,購買1千克甲種糖果和2千克乙種糖果共需38元.
(1)求甲、乙兩種糖果的價格;
(2)若購買甲、乙兩種糖果共20千克,且總價不超過240元,問甲種糖果最少購買多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 ,則陰影部分圖形的面積為(
A.4π
B.2π
C.π
D.

查看答案和解析>>

同步練習冊答案