【題目】如圖,拋物線,直線與拋物線、軸分別相交于、

1時(shí),點(diǎn)的坐標(biāo)為________;

2)當(dāng)、兩點(diǎn)重合時(shí),求的值;

3)當(dāng)點(diǎn)達(dá)到最高時(shí),求拋物線解析式;

4)在拋物線軸所圍成的封閉圖形的邊界上,我們把橫坐標(biāo)是整數(shù)的點(diǎn)稱為可點(diǎn),直接寫出時(shí)可點(diǎn)的個(gè)數(shù)為____

【答案】1)(2,2);(2;(3;(4678.

【解析】

1)當(dāng)t=1時(shí),分別求出拋物線和直線解析式,求出交點(diǎn)Q的坐標(biāo)即可;

2)當(dāng)P,Q兩點(diǎn)重合時(shí),則直線l與拋物線交于x軸,交點(diǎn)的縱坐標(biāo)為0,代入求出t的值即可;

3)拋物線的頂點(diǎn)坐標(biāo)是(t,t+2),當(dāng)Q點(diǎn)達(dá)到最高時(shí),則直線l與拋物線交于頂點(diǎn),2t=t,解出t,求出解析式即可;

4)①當(dāng)t=1時(shí),,②當(dāng)t=2時(shí),,③當(dāng)時(shí),分別求出可點(diǎn)的個(gè)數(shù)即可.

1)當(dāng)t=1時(shí),拋物線,直線,

聯(lián)立,

解得

∴Q點(diǎn)坐標(biāo)為(2,2);

2)當(dāng)P,Q兩點(diǎn)重合時(shí),則直線l與拋物線交于x軸,

交點(diǎn)的縱坐標(biāo)為0,

解得:;

3)拋物線的頂點(diǎn)坐標(biāo)是(t,t+2),

當(dāng)Q點(diǎn)達(dá)到最高時(shí),則直線l與拋物線交于頂點(diǎn),

∴2t=t,

∴t=0

拋物線解析式為:;

4)①當(dāng)t=1時(shí),,與x軸交于A,B兩點(diǎn),

y=0,得

解得:,

,

∴“可點(diǎn)的個(gè)數(shù)為6;

②當(dāng)t=2時(shí),,與x軸交于A,B兩點(diǎn),

y=0,得,

解得:

∴AB=4,

∴“可點(diǎn)的個(gè)數(shù)為8;

③當(dāng)時(shí),

AB4,

當(dāng)拋物線不過點(diǎn)(3,0)時(shí),

∴“可點(diǎn)的個(gè)數(shù)為6;

當(dāng)拋物線過點(diǎn)(3,0)時(shí),

∴“可點(diǎn)的個(gè)數(shù)為7;

時(shí)可點(diǎn)的個(gè)數(shù)為678.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投入研發(fā)費(fèi)用40萬元(40萬元只計(jì)入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為4/件.此產(chǎn)品年銷售量y(萬件)與售價(jià)x(元件)之間滿足函數(shù)關(guān)系式y=﹣x+20

(1)求這種產(chǎn)品第一年的利潤W(萬元)與售價(jià)x(元件)滿足的函數(shù)關(guān)系式;

(2)該產(chǎn)品第一年的利潤為24萬元,那么該產(chǎn)品第一年的售價(jià)是多少?

(3)第二年,該公司將第一年的利潤24萬元(24萬元只計(jì)入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為3/件.為保持市場占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過10萬件.請計(jì)算該公司第二年的利潤W2至少為多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在等腰直角△ABC 中,∠A =90°AB=AC=3,在邊 AB 上取一點(diǎn) D(點(diǎn) D 不與點(diǎn) AB 重合),在邊 AC 上取一點(diǎn) E,使 AE=AD,連接 DE. △ADE 繞點(diǎn) A 逆時(shí)針方向旋轉(zhuǎn)αα360°),如圖 2

1)請你在圖 2 中,連接 CE BD,判斷線段 CE BD 的數(shù)量關(guān)系,并說明理由;

2)請你在圖 3 中,畫出當(dāng)α =45°時(shí)的圖形,連接 CE BE,求出此時(shí)△CBE 的面積;

3)若 AD=1,點(diǎn) M CD 的中點(diǎn),在△ADE 繞點(diǎn) A 逆時(shí)針方向旋轉(zhuǎn)的過程中,線段AM 的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)坐標(biāo)為,軸正半軸上一動點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動的過程中的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,甲、乙兩車同時(shí)從A地出發(fā),分別勻速前往B地與C地,甲車到達(dá)B地休息一段時(shí)間后原速返回,乙車到達(dá)C地后立即返回.兩車恰好同時(shí)返回A地.圖②是兩車各自行駛的路程y(千米)與出發(fā)時(shí)間x(時(shí))之間的函數(shù)圖象.根據(jù)圖象解答下列問題:

1)甲車到達(dá)B地休息了   時(shí);

2)求甲車返回A地途中yx之間的函數(shù)關(guān)系式;

3)當(dāng)x為何值時(shí),兩車與A地的路程恰好相同.(不考慮兩車同在A地的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018513日,大國重器﹣﹣中國第一艘國產(chǎn)航母正式海試,某校團(tuán)支部為了了解同學(xué)們對此事的知曉情況,隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,并根據(jù)收集到的信息繪制了如下兩幅不完整的統(tǒng)計(jì)圖,圖中A表示“知道得很詳細(xì)”,B表示“知道個(gè)大概”,C表示“聽說了”,D表示“完全不知道”,請根據(jù)途中提供的信息完成下列問題:

1)扇形統(tǒng)計(jì)圖中A對應(yīng)的圓心角是   度,并補(bǔ)全折線統(tǒng)計(jì)圖.

2)被抽取的同學(xué)中有4位同學(xué)都是班級的信息員,其中有一位信息員屬于D類,校團(tuán)支部從這4位信息員中隨機(jī)選出兩位作為校廣播站某訪談節(jié)目的嘉賓,請用列表法或畫樹狀圖法,求出屬于D類的信息員被選為的嘉賓的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=x0)的圖象經(jīng)過矩形的對稱中點(diǎn)E,且與邊BC交于點(diǎn)D,若過點(diǎn)D的直線y=mx+n將矩形OABC的面積分成35的兩部分,則此直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB110°,∠BOCa.將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連接OD

1)試說明△COD是等邊三角形;

2)當(dāng)a150°時(shí),OB3OC4,試求OA的長.

查看答案和解析>>

同步練習(xí)冊答案