【題目】如圖是二次函數(shù)yax2+bx+c的圖象,下列結(jié)論:①2ab;②ab+c0;③ab;④ac,其中正確的結(jié)論是( 。

A.①③B.②③C.①④D.①③④

【答案】D

【解析】

根據(jù)函數(shù)圖像的位置可以斷定a0,則b0,而c0;由對稱軸x=﹣>﹣12ab;因為x=-1時,y=a-b+c0,再由此知a+cb,所以ab;綜上知道a+cb2a,可得ac.因此此題選D

解:拋物線的對稱軸在y軸右側(cè),則a、b同號,而a0,則b0,而c0

①函數(shù)的對稱性x=﹣>﹣1,故2ab,故①正確,符合題意;

②當x=﹣1時,yab+c0,故②錯誤,不符合題意;

③由②得,ab+c0,即ab<﹣c0,即ab,故③正確,符合題意;

④由①②得:ab+c0,即a+cb2a,故ac,故④正確,符合題意;

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解陽光社區(qū)年齡20~60歲居民對垃圾分類的認識,學校課外實踐小組隨機抽取了該社區(qū)、該年齡段的部分居民進行了問卷調(diào)查,并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.圖中A表示“全部能分類”,B表示“基本能分類”,C表示“略知一二”,D表示“完全不會”.請根據(jù)圖中信息解答下列問題:

1)補全條形統(tǒng)計圖并填空:被調(diào)查的總?cè)藬?shù)是 人,扇形圖中D部分所對應(yīng)的圓心角的度數(shù)為 ;

2)若該社區(qū)中年齡20~60歲的居民約3000人,請根據(jù)上述調(diào)查結(jié)果,估計該社區(qū)中C類有多少人?

3)根據(jù)統(tǒng)計數(shù)據(jù),結(jié)合生活實際,請你對社區(qū)垃圾分類工作提一條合理的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)k>0)的圖象交于AB兩點,點A在第一象限點Cx軸正半軸上,連結(jié)AC交反比例函數(shù)圖象于點D.AE為∠BAC的平分線,過點BAE的垂線,垂足為E,連結(jié)DE.若AC=3DC,△ADE的面積為8,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一方有難,八方支援.已知甲、乙兩地急需一批物資,其中甲地需要240噸,乙地需要260噸.A、B兩城市通過募捐,很快籌集齊了這種物資,其中A城市籌到物資200噸,B城市籌到物資300噸.已知從A、B兩城市將每噸物資分別運往甲、乙兩地所需運費成本(單位:元/噸)如表所示.問:怎樣調(diào)運可使總運費最少?最少運費為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,點E,F分別在BC,AD上,BEDF,連結(jié)AE,CF

1)求證:四邊形AECF是平行四邊形;

2)若四邊形AECF為菱形,∠AFC120°BECE4,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在四邊形ABCD中,AD//BC,∠C=90°動點P從點C出發(fā)沿線段CD向點D運動.到達點D即停止,若EF分別是AP、BP的中點,設(shè)CP=x,△PEF的面積為y,且yx之間的函數(shù)關(guān)系的圖象如圖乙所示,則線段AB長為( )

A.2B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點(點在點的左側(cè)),交軸于點,將直線以點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn),交軸于點,交拋物線于另一點.直線的解析式為:

是第一象限內(nèi)拋物線上一點,當的面積最大時,在線段上找一點(不與重合),使的值最小,求出點的坐標,并直接寫出的最小值;

如圖,將沿射線方向以每秒個單位的速度平移,記平移后的,平移時間為秒,當為等腰三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線Gyax22ax+4a0).

1)當a1時,

①拋物線G的對稱軸為x   

②若在拋物線G上有兩點(2,y1),(my2),且y2y1,則m的取值范圍是   

2)拋物線G的對稱軸與x軸交于點M,點M與點A關(guān)于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

同步練習冊答案