【題目】在△ABC中,AB=AC,點(diǎn)F是BC延長(zhǎng)線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與點(diǎn)A在BC的同側(cè),連接BE,點(diǎn)G是BE的中點(diǎn),連接AG、DG.
(1)如圖①,當(dāng)∠BAC=∠DCF=90°時(shí),直接寫出AG與DG的位置和數(shù)量關(guān)系;
(2)如圖②,當(dāng)∠BAC=∠DCF=60°時(shí),試探究AG與DG的位置和數(shù)量關(guān)系,
(3)當(dāng)∠BAC=∠DCF=α?xí)r,直接寫出AG與DG的數(shù)量關(guān)系.
【答案】(1) AG⊥DG,AG=DG;(2) AG⊥DG,AG=DG,證明詳見(jiàn)解析;(3)DG=AGtan.
【解析】
試題分析:(1)延長(zhǎng)DG與BC交于H,連接AH、AD,通過(guò)證得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后證得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,進(jìn)而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;
(2)延長(zhǎng)DG與BC交于H,連接AH、AD,通過(guò)證得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后證得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,進(jìn)而求得△HAD是等邊三角形,即可證得AG⊥GD,AG=DG;
(3)延長(zhǎng)DG與BC交于H,連接AH、AD,通過(guò)證得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后證得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,進(jìn)而求得△HAD是等腰三角形,即可證得DG=AGtan.
試題解析:(1)AG⊥DG,AG=DG,
證明:延長(zhǎng)DG與BC交于H,連接AH、AD,
∵四邊形CDEF是正方形,
∴DE=DC,DE∥CF,
∴∠GBH=∠GED,∠GHB=∠GDE,
∵G是BC的中點(diǎn),
∴BG=EG,
在△BGH和△EGD中
∴△BGH≌△EGD(AAS),
∴BH=ED,HG=DG,
∴BH=DC,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠DCF=90°,
∴∠DCB=90°,
∴∠ACD=45°,
∴∠ABH=∠ACD=45°,
在△ABH和△ACD中
∴△ABH≌△ACD(SAS),
∴∠BAH=∠CAD,AH=AD,
∵∠BAH+∠HAC=90°,
∴∠CAD+∠HAC=90°,即∠HAD=90°,
∴AG⊥GD,AG=GD;
(2)AG⊥GD,AG=DG;
證明:延長(zhǎng)DG與BC交于H,連接AH、AD,
∵四邊形CDEF是正方形,
∴DE=DC,DE∥CF,
∴∠GBH=∠GED,∠GHB=∠GDE,
∵G是BC的中點(diǎn),
∴BG=EG,
在△BGH和△EGD中
∴△BGH≌△EGD(AAS),
∴BH=ED,HG=DG,
∴BH=DC,
∵AB=AC,∠BAC=∠DCF=60°,
∴∠ABC=60°,∠ACD=60°,
∴∠ABC=∠ACD=60°,
在△ABH和△ACD中
∴△ABH≌△ACD(SAS),
∴∠BAH=∠CAD,AH=AD,
∴∠BAC=∠HAD=60°;
∴AG⊥HD,∠HAG=∠DAG=30°,
∴tan∠DAG=tan30°=,
∴AG=DG.
(3)DG=AGtan;
證明:延長(zhǎng)DG與BC交于H,連接AH、AD,
∵四邊形CDEF是正方形,
∴DE=DC,DE∥CF,
∴∠GBH=∠GED,∠GHB=∠GDE,
∵G是BC的中點(diǎn),
∴BG=EG,
在△BGH和△EGD中
∴△BGH≌△EGD(AAS),
∴BH=ED,HG=DG,
∴BH=DC,
∵AB=AC,∠BAC=∠DCF=α,
∴∠ABC=90°﹣,∠ACD=90°﹣,
∴∠ABC=∠ACD,
在△ABH和△ACD中
∴△ABH≌△ACD(SAS),
∴∠BAH=∠CAD,AH=AD,
∴∠BAC=∠HAD=α;
∴AG⊥HD,∠HAG=∠DAG=,
∴tan∠DAG=tan=,
∴DG=AGtan.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);
(2)如圖②,當(dāng)射線OC在∠AOB內(nèi)繞O點(diǎn)旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化若變化,說(shuō)明理由;若不變,求∠DOE的度數(shù);
(3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫出圖形,判斷∠DOE的大小是否發(fā)生變化若變化,說(shuō)明理由;若不變,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 “囧”(jiong)是近時(shí)期網(wǎng)絡(luò)流行語(yǔ),像一個(gè)人臉郁悶的神情.如圖所示,一張邊長(zhǎng)為20的正方形的紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)“囧”字圖案(陰影部分).設(shè)剪去的小長(zhǎng)方形長(zhǎng)和寬分別為x、y,剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)也分別為x、y.
(1)用含有x、y的代數(shù)式表示右圖中“囧”的面積;
(2)當(dāng)時(shí),求此時(shí)“囧”的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育老師測(cè)試了一組學(xué)生的立定跳遠(yuǎn)成績(jī),記錄如下(單位:m):2.00,2.11,2.35,2.15,2.20,2.17,那么這組數(shù)據(jù)的中位數(shù)是( 。
A.2.15B.2.16C.2.17D.2.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=7,AC=5,BC=6,∠ABC和∠ACB的平分線相交于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線交AB于點(diǎn)E,交AC于點(diǎn)F.則△AEF的周長(zhǎng)為( )
A.9 B.11 C.12 D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,則在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.
所以式子|x﹣2|的幾何意義是數(shù)軸上表示x的點(diǎn)與表示2的點(diǎn)之間的距離.借助于數(shù)軸回答下列問(wèn)題:
①數(shù)軸上表示2和5兩點(diǎn)之間的距離是 , 數(shù)軸上表示1和﹣3的兩點(diǎn)之間的距離是 .
②數(shù)軸上表示x和﹣2的兩點(diǎn)之間的距離表示為 .
③數(shù)軸上表示x的點(diǎn)到表示1的點(diǎn)的距離與它到表示﹣3的點(diǎn)的距離之和可表示為:|x﹣1|+|x+3|.則|x﹣1|+|x+3|的最小值是 .
④若|x﹣3|+|x+1|=8,則x=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若|a|=﹣a,則a為( )
A. a是負(fù)數(shù) B. a是正數(shù) C. a=0 D. 負(fù)數(shù)或零
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①、②、③中,點(diǎn)E、D分別是正△ABC、正四邊形ABCM、正五邊形ABCMN中以C點(diǎn)為頂點(diǎn)的相鄰兩邊上的點(diǎn),且BE=CD,DB交AE于P點(diǎn).
(1)求圖①中,∠APD的度數(shù)為_______;(2)圖②中,∠APD的度數(shù)為_________,
(3)圖③中,∠APD的度數(shù)為_______;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com