【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A、B、O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點(diǎn)的坐標(biāo)為

【答案】(36,0)
【解析】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,
∴AB=5,
∴圖③、④的直角頂點(diǎn)坐標(biāo)為(12,0),
∵每旋轉(zhuǎn)3次為一循環(huán),
∴圖⑥、⑦的直角頂點(diǎn)坐標(biāo)為(24,0),
∴圖⑨、⑩的直角頂點(diǎn)為(36,0).
故答案為:(36,0).
如圖,在△AOB中,∠AOB=90°,OA=3,OB=4,則AB=5,每旋轉(zhuǎn)3次為一循環(huán),則圖③、④的直角頂點(diǎn)坐標(biāo)為(12,0),圖⑥、⑦的直角頂點(diǎn)坐標(biāo)為(24,0),所以,圖⑨、⑩10的直角頂點(diǎn)為(36,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、D、E在⊙O上,弦AE、BD的延長(zhǎng)線相交于點(diǎn)C.若AB是⊙O的直徑,D是BC的中點(diǎn).

(1)試判斷AB、AC之間的大小關(guān)系,并給出證明;
(2)在上述題設(shè)條件下,當(dāng)△ABC為正三角形時(shí),點(diǎn)E是否AC的中點(diǎn)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王師傅常用角尺平分一個(gè)角,如圖所示,學(xué)生小明可用三角尺平分一個(gè)角,他們?cè)凇?/span>AOB兩邊上分別取OM、ON,使OMON,前者使角尺兩邊相同刻度分別與M、N重合,角尺頂點(diǎn)為P;后者分別過(guò)M、NOA、OB的垂線,交點(diǎn)為P,則均可得到△OMP≌△ONP,其依據(jù)分別是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名大學(xué)生去距學(xué)校36千米的某鄉(xiāng)鎮(zhèn)進(jìn)行社會(huì)調(diào)查.他們從學(xué)校出發(fā),騎電動(dòng)車行駛20分鐘時(shí)發(fā)現(xiàn)忘帶相機(jī),甲下車前往,乙騎電動(dòng)車按原路返回.乙取相機(jī)后(在學(xué)校取相機(jī)所用時(shí)間忽略不計(jì)),騎電動(dòng)車追甲.在距鄉(xiāng)鎮(zhèn)13.5千米處追上甲后同車前往鄉(xiāng)鎮(zhèn).乙電動(dòng)車的速度始終不變.設(shè)甲與學(xué)校相距y(千米),乙與學(xué)校相離y(千米),甲離開(kāi)學(xué)校的時(shí)間為t(分鐘).yyx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問(wèn)題:

1)電動(dòng)車的速度為   千米/分鐘;

2)甲步行所用的時(shí)間為   分;

3)求乙返回到學(xué)校時(shí),甲與學(xué)校相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,點(diǎn)M,N分別在AB,BC上,將△BMN沿MN翻折得到△FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為( )

A. 115° B. 105° C. 95° D. 85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D為AB的中點(diǎn),點(diǎn)P在線段上以3 cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以相同速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)也停止運(yùn)動(dòng).當(dāng)△BPD與△CQP全等時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一圓的半徑是10cm,圓內(nèi)的兩條平行弦長(zhǎng)分別為12cm和16cm,則這兩條平行弦之間的距離為

查看答案和解析>>

同步練習(xí)冊(cè)答案