【題目】使得函數(shù)值為零的自變量的值稱為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù)y=x-1,令y=0可得x=1,我們就說(shuō)1是函數(shù)y=x-1的零點(diǎn).
已知y=x2-2mx-2(m+3)(m為常數(shù)).
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn);
(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn);
(3)設(shè)函數(shù)的兩個(gè)零點(diǎn)分別為x1和x2,且,此時(shí)函數(shù)圖象與x軸的交點(diǎn)分別為A,B(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)M在直線y=x-10上,當(dāng)MA+MB最小時(shí),求直線AM的函數(shù)表達(dá)式.
【答案】(1)或-(2)y=-x-1
【解析】試題分析:(1)根據(jù)題中給出的函數(shù)的零點(diǎn)的定義,將m=0代入y=x2-2mx-2(m+3),然后令y=0即可解得函數(shù)的零點(diǎn);
(2)令y=0,函數(shù)變?yōu)橐辉畏匠,要想證明方程有兩個(gè)解,只需證明△>0即可;
(3)根據(jù)題中條件求出函數(shù)解析式進(jìn)而求得A、B兩點(diǎn)坐標(biāo),個(gè)、作點(diǎn)B關(guān)于直線y=x-10的對(duì)稱點(diǎn)B′,連接AB′,求出點(diǎn)B′的坐標(biāo)即可求得當(dāng)MA+MB最小時(shí),直線AM的函數(shù)解析式.
試題解析:(1)當(dāng)=0時(shí),該函數(shù)為,令=0,可得,
∴當(dāng)=0時(shí),求該函數(shù)的零點(diǎn)為和。
(2)令=0,得△=,
∴無(wú)論取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根。
即無(wú)論取何值,該函數(shù)總有兩個(gè)零點(diǎn)
(3)依題意有,
由得,即,解得。
∴函數(shù)的解析式為令=0,解得。
∵點(diǎn)A在點(diǎn)B左側(cè),∴A(),B(4,0)。
作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn)B’,連結(jié)AB’,則AB’與直線的交點(diǎn)就是滿足條件的M點(diǎn)。易求得直線與軸、軸的交點(diǎn)分別為C(10,0),D(0,10)。Z.X.X.K]
連結(jié)CB’,則∠BCD=45°,∴BC=CB’=6,∠B’CD=∠BCD=45°。
∴∠BCB’=90°,即B’()。設(shè)直線AB’的解析式為,則Z-X-X-K]
,解得∴直線AB’的解析式為,
即AM的解析式為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,測(cè)量人員在山腳A處測(cè)得山頂B的仰角為45°,沿著仰角為30°的山坡前進(jìn)1000米到達(dá)D處,在D處測(cè)得山頂B的仰角為60°,求山的高度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)M、P、N、Q依次是正方形ABCD的邊AB、BC、CD、DA上一點(diǎn)(不與正方形的頂點(diǎn)重合),給出如下結(jié)論:
①M(fèi)N⊥PQ,則MN=PQ;
②MN=PQ,則MN⊥PQ;
③△AMQ≌△CNP,則△BMP≌△DNQ;
④△AMQ∽△CNP,則△BMP∽△DNQ
其中所有正確的結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,其余三面用圍欄,圍成一個(gè)矩形花園ABCD(圍墻MN最長(zhǎng)可利用25m).現(xiàn)計(jì)劃用50m長(zhǎng)的圍欄,請(qǐng)你設(shè)計(jì)一種圍法,使矩形花園的面積為300m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,先找到長(zhǎng)方形紙的寬DC的中點(diǎn)E,將∠C過(guò)E點(diǎn)折起任意一個(gè)角,折痕是EF,再將∠D過(guò)E點(diǎn)折起,使D′E和C′E重合,折痕是GE,請(qǐng)?zhí)剿飨铝袉?wèn)題:
(1)∠FEC′和∠GED′互為余角嗎?為什么?
(2)∠GEF是直角嗎?為什么?
(3)在上述折紙圖形中,還有哪些互為余角?哪些互為補(bǔ)角?(各寫出兩對(duì)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下面是按照一定規(guī)律畫出的“樹形圖”,經(jīng)觀察可以發(fā)現(xiàn):圖A2比圖A1多出2個(gè)“樹枝”,圖A3比圖A2多出4個(gè)“樹枝”,圖A4比圖A3多出8個(gè)“樹枝”,…,照此規(guī)律,圖A6比圖A2多出“樹枝”( 。
A. 32 B. 56 C. 60 D. 64
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y1=﹣x+2與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P(m,3)為直線l1上一點(diǎn),另一直線l2:y2=x+b過(guò)點(diǎn)P.
(1)求點(diǎn)P坐標(biāo)和b的值;
(2)若點(diǎn)C是直線l2與x軸的交點(diǎn),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始以每秒1個(gè)單位的速度向x軸正方向移動(dòng).設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
①請(qǐng)寫出當(dāng)點(diǎn)Q在運(yùn)動(dòng)過(guò)程中,△APQ的面積S與t的函數(shù)關(guān)系式;
②求出t為多少時(shí),△APQ的面積小于3;
③是否存在t的值,使△APQ為等腰三角形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為緩解城市交通壓力,決定修建人行天橋,原設(shè)計(jì)天橋的樓梯長(zhǎng)AB=6m,∠ABC=45°,后考慮到安全因素,將樓梯腳B移到CB延長(zhǎng)線上點(diǎn)D處,使∠ADC=30°(如圖所示).
(結(jié)果保留根號(hào))
(1)求調(diào)整后樓梯AD的長(zhǎng);
(2)求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com