【題目】如圖所示的一塊地,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求這塊地的面積.
【答案】24m2
【解析】連接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面積減去△ACD的面積就是所求的面積.
解:連接AC.
在Rt△ACD中,AD=4,CD=3,
∴AC 2 =AD 2 +CD 2 =4 2 +3 2 =25,
又∵AC>0,
∴AC=5.
又∵BC=12,AB=13,
∴AC 2 +BC 2 =5 2 +12 2 =169,
又∵AB 2 =169,
∴AC 2 +BC 2 =AB 2 ,
∴△ACB是直角三角形,
∴S =S △ABC -S △ADC =30-6=24m2.
“點睛”考查了直角三角形面積公式以及勾股定理的應(yīng)用,作輔助線是解決本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=80°,OE平分∠MON,點A、B、C分別是射線OM、OE、ON上的動點(A、B、C不與點O重合),連接AC交射線OE于點D.設(shè)∠OAC=α.
(1)如圖1,若AB∥ON,則:
①∠ABO的度數(shù)是 ;
②如圖2,當∠BAD=∠ABD時,試求α的值(要說明理由);
(2)如圖3,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個相等的角?若存在,直接寫出α的值;若不存在,說明理由.(自己畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是( 。
A. 2 B. 3 C. 5 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲、乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機中一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如下表):
甲種品牌 化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金卷(元) | 6 | 12 | 6 |
乙種品牌 化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金卷(元) | 12 | 6 | 12 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;
(2)如果一個顧客當天在本店購物滿88元,若只考慮獲得最多的禮品卷,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一、閱讀理解:
在△ABC中,BC=a,CA=b,AB=c;
(1)若∠C為直角,則a2+b2=c2;
(2)若∠C為銳角,則a2+b2與c2的關(guān)系為:a2+b2>c2;
(3)若∠C為鈍角,試推導(dǎo)a2+b2與c2的關(guān)系.
二、探究問題:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是鈍角三角形,求第三邊c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,對于平面內(nèi)任一點P (a,b)若規(guī)定以下兩種變換:①f(a,b)=(﹣a,﹣b),如f(1,2)=(﹣1,﹣2);②g(a,b)=(b,a),如g(1,3)=(3,1)按照以上變換,那么f(g(a,b))等于( 。
A. (﹣b,﹣a) B. (a,b) C. (b,a) D. (﹣a,﹣b)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com