已知:正方形ABCD的邊長為1,射線AE與射線BC交于點(diǎn)E,射線AF與射線CD交于點(diǎn)F,∠EAF=45°.
(1)如圖1,當(dāng)點(diǎn)E在線段BC上時(shí),試猜想線段EF、BE、DF有怎樣的數(shù)量關(guān)系?并證明你的猜想.
(2)設(shè)BE=x,DF=y,當(dāng)點(diǎn)E在線段BC上運(yùn)動時(shí)(不包括點(diǎn)B、C),如圖1,求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍.
(3)當(dāng)點(diǎn)E在射線BC上運(yùn)動時(shí)(不含端點(diǎn)B),點(diǎn)F在射線CD上運(yùn)動.試判斷以E為圓心以BE為半徑的⊙E和以F為圓心以FD為半徑的⊙F之間的位置關(guān)系.
(4)當(dāng)點(diǎn)E在BC延長線上時(shí),設(shè)AE與CD交于點(diǎn)G,如圖2.問⊿EGF與⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,請說明理由.
(1)EF=BE+DF,理由見解析;(2)y= (0<x<1);(3)⊙E與⊙F外切;(4)BE的長為1+ .
解析試題分析:(1)將△ADF繞著點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得△ABF′,易知點(diǎn)F′、B、E在一直線上.證得AF′E≌△AFE.從而得到EF=F′E=BE+DF;
(2)由(1)得EF=x+y再根據(jù)CF=1-y,EC=1-x,得到(1-y)2+(1-x)2=(x+y)2.化簡即可得到y(tǒng)=
(0<x<1).
(3)當(dāng)點(diǎn)E在點(diǎn)B、C之間時(shí),由(1)知EF=BE+DF,故此時(shí)⊙E與⊙F外切;當(dāng)點(diǎn)E在點(diǎn)C時(shí),DF=0,⊙F不存在.當(dāng)點(diǎn)E在BC延長線上時(shí),將△ADF繞著點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得△ABF′,證得△AF′E≌△AFE.即可得到EF=EF′=BE-BF′=BE-FD.從而得到此時(shí)⊙E與⊙F內(nèi)切.
(4)△EGF與△EFA能夠相似,只要當(dāng)∠EFG=∠EAF=45°即可.這時(shí)有 CF=CE.設(shè)BE=x,DF=y,由(3)有EF=x-y.由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.化簡可得 y=(x>1).又由 EC=FC,得x-1=1+y,即x-1=1+,化簡得x2-2x-1=0,解之即可求得BE的長
試題解析:
(1)猜想:EF=BE+DF.理由如下:
將△ADF繞著點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得△ABF′,易知點(diǎn)F′、B、E在一直線上.如圖1.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得EF=x+y
又CF=1-y,EC=1-x,
∴(1-y)2+(1-x)2=(x+y)2.
化簡可得y= (0<x<1);
(3)①當(dāng)點(diǎn)E在點(diǎn)B、C之間時(shí),由(1)知EF=BE+DF,故此時(shí)⊙E與⊙F外切;
②當(dāng)點(diǎn)E在點(diǎn)C時(shí),DF=0,⊙F不存在.
③當(dāng)點(diǎn)E在BC延長線上時(shí),將△ADF繞著點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得△ABF′,圖2.
有AF′=AF,∠1=∠2,BF′=FD,
∴∠F′AF=90°.
∴∠F′AE=∠EAF=45°.
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=EF′=BE-BF′=BE-FD.
∴此時(shí)⊙E與⊙F內(nèi)切.
綜上所述,當(dāng)點(diǎn)E在線段BC上時(shí),⊙E與⊙F外切;當(dāng)點(diǎn)E在BC延長線上時(shí),⊙E與⊙F內(nèi)切;
(4)△EGF與△EFA能夠相似,只要當(dāng)∠EFG=∠EAF=45°即可.
這時(shí)有CF=CE.
設(shè)BE=x,DF=y,由(3)有EF=x-y.
由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.
化簡可得 y=(x>1).
又由EC=FC,得x-1=1+y,即x-1=1+,化簡得
x2-2x-1=0,解之得
x=1+或x=1-(不符題意,舍去).
∴所求BE的長為1+ .
考點(diǎn):相似形綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
把兩個(gè)直角三角形如圖(1)放置,使∠ACB與∠DCE重合,AB與DE相交于點(diǎn)O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE="5cm," CD=10cm.
(1)圖1中線段AO的長= cm;DO= cm
圖1
(2)如圖2,把△DCE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α度(0°<α<90°)得△D1CE1,D1C與AB相交于點(diǎn)F,若△BCE1恰好是以BC為底邊的等腰三角形,求線段AF的長.
圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請說明理由;如不成立,請求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請直接寫出的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.
(1)求證:△ABF∽△DFE
(2)若△BEF也與△ABF相似,請求出的值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在6×8的網(wǎng)格圖中,每個(gè)小正方形邊長均為1,點(diǎn)O和△ABC的頂點(diǎn)均為小正方形的頂點(diǎn).
⑴以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2
⑵連接⑴中的AA′,求四邊形AA′C′C的周長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個(gè)外角,且滿足 ∠MAN=45°,連結(jié)MC,NC,MN.
(1)填空:與△ABM相似的三角形是△ ,BM·DN= ;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長線上的點(diǎn),連接AE,交BC于點(diǎn)F。
(1)求證:△ABF∽△ECF
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com