【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 , ,1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有1,3,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹(shù)形圖或列表法列出所有可能的結(jié)果.
(2)現(xiàn)制定這樣一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則稱甲獲勝;否則稱乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)你用概率知識(shí)解釋.

【答案】
(1)解:畫樹(shù)狀圖得:

∵(a,b)的可能結(jié)果有( ,1)、( ,3)、( ,2)、( ,1)、( ,3)、( ,2)、(1,1)、(1,3)及(1,2),

∴(a,b)取值結(jié)果共有9種;


(2)解:∵當(dāng)a= ,b=1時(shí),△=b2﹣4ac=﹣1<0,此時(shí)ax2+bx+1=0無(wú)實(shí)數(shù)根,

當(dāng)a= ,b=3時(shí),△=b2﹣4ac=7>0,此時(shí)ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,

當(dāng)a= ,b=2時(shí),△=b2﹣4ac=2>0,此時(shí)ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,

當(dāng)a= ,b=1時(shí),△=b2﹣4ac=0,此時(shí)ax2+bx+1=0有兩個(gè)相等的實(shí)數(shù)根,

當(dāng)a= ,b=3時(shí),△=b2﹣4ac=8>0,此時(shí)ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,

當(dāng)a= ,b=2時(shí),△=b2﹣4ac=3>0,此時(shí)ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,

當(dāng)a=1,b=1時(shí),△=b2﹣4ac=﹣3<0,此時(shí)ax2+bx+1=0無(wú)實(shí)數(shù)根,

當(dāng)a=1,b=3時(shí),△=b2﹣4ac=5>0,此時(shí)ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,

當(dāng)a=1,b=2時(shí),△=b2﹣4ac=0,此時(shí)ax2+bx+1=0有兩個(gè)相等的實(shí)數(shù)根,

∴P(甲獲勝)=P(△>0)= >P(乙獲勝)= ,

∴這樣的游戲規(guī)則對(duì)甲有利,不公平.


【解析】(1)首先根據(jù)題意畫出樹(shù)狀圖,然后根據(jù)樹(shù)狀圖即可求得所有等可能的結(jié)果;(2)利用一元二次方程根的判別式,即可判定各種情況下根的情況,然后利用概率公式求解即可求得甲、乙獲勝的概率,比較概率大小,即可確定這樣的游戲規(guī)是否公平.
【考點(diǎn)精析】關(guān)于本題考查的求根公式和列表法與樹(shù)狀圖法,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根;當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)的經(jīng)典著作,書中有一個(gè)問(wèn)題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問(wèn)金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計(jì)).問(wèn)黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形ABCD的邊長(zhǎng)為厘米,對(duì)角線AC上的兩個(gè)動(dòng)點(diǎn)E,F,點(diǎn)E從點(diǎn)A、點(diǎn)F從點(diǎn)C同時(shí)出發(fā),沿對(duì)角線以1厘米/秒的相同速度運(yùn)動(dòng),過(guò)EEHACRtACD的直角邊于H;過(guò)FFGACRtACD的直角邊于G,連接HG,EB.設(shè)HE,EF,F(xiàn)G,GH圍成的圖形面積為,AE,EB,BA圍成的圖形面積為(這里規(guī)定:線段的面積為).E到達(dá)C,F到達(dá)A停止.若E的運(yùn)動(dòng)時(shí)間為x秒,解答下列問(wèn)題:

(1)如圖①,判斷四邊形EFGH是什么四邊形,并證明;

(2)當(dāng)0<x<8時(shí),求x為何值時(shí),;

(3)若的和,試用x的代數(shù)式表示y.(圖②為備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請(qǐng)將表格補(bǔ)充完整;

(2)求經(jīng)過(guò)連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A、B表示的數(shù)分別是-4、8(A、B兩點(diǎn)間的距離用AB表示),點(diǎn)M、N是數(shù)軸上兩個(gè)動(dòng)點(diǎn),分別表示數(shù)m、n

(1) AB=______個(gè)單位長(zhǎng)度;若點(diǎn)MA、B之間,則|m+4|+|m-8|=___________

(2) |m+4|+|m-8|=20,求m的值

(3) 若點(diǎn)M、點(diǎn)N既滿足|m+4|+n=6,也滿足|n-8|+m=28,則m=________;n=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一張長(zhǎng)方形紙條上畫一條數(shù)軸.

(1)若折疊紙條,數(shù)軸上表示﹣3的點(diǎn)與表示5的點(diǎn)重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為   ;

(2)若將此紙條沿圖中虛線處剪開(kāi),將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折2次后,再將其展開(kāi),則最左端的折痕和最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù)分別是   

(3)如果該數(shù)軸上的兩個(gè)點(diǎn)表示的數(shù)為ab,經(jīng)過(guò)對(duì)折,兩點(diǎn)恰好重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)為   ;(用含a,b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了更好的開(kāi)展“學(xué)校特色體育教育”,從全校八年級(jí)各班隨機(jī)抽取了60學(xué)生,進(jìn)行各項(xiàng)體育項(xiàng)目的測(cè)試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個(gè)個(gè)體的測(cè)試成績(jī)的部分統(tǒng)計(jì)表、圖: 某校60名學(xué)生體育測(cè)試成績(jī)成績(jī)統(tǒng)計(jì)表

成績(jī)

劃記

頻數(shù)

頻率

優(yōu)秀

正正正

a

0.3

良好

正正正正正正

30

b

合格

9

0.15

不合格

c

d

合計(jì)

(說(shuō)明:40﹣55分為不合格,55﹣70分為合格,70﹣85分為良好,85﹣100分為優(yōu)秀)
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)表中的a=;b=;c=;d=
(2)請(qǐng)根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針?lè)较蛞?個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2016次相遇地點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,DHBCH,交BEG,下列結(jié)論中正確的是(  )

①△BCD為等腰三角形;②BF=AC;CE=BF;BH=CE.

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案