【題目】如圖,四邊形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中點,

(1)求證:AC2=ABAD;

(2)求證:△AFD∽△CFE.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)根據(jù)兩組對角對應相等的兩個三角形相似證明即可;
(2)根據(jù)直角三角形的性質得到CE=BE=AE,根據(jù)等腰三角形的性質得到∠EAC=∠ECA,推出AD∥CE即可解決問題;

(1)證明:∵AC平分∠DAB,

∴∠DAC=CAB,

∵∠ADC=ACB=90°,

∴△ADC∽△ACB,

AD:AC=AC:AB,

AC2=ABAD;

(2)證明:∵EAB的中點,

CE=BE=AE,

∴∠EAC=ECA,

∵∠DAC=CAB,

∴∠DAC=ECA,

CEAD,

∴△AFD∽△CFE.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解九年級學生的體能狀況,從我縣某校九年級學生中隨機抽取部分學生進行八百米跑體能測試,測試結果分為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題;

(1)求本次測試共調查了多少名學生?并在答題卡上補全條形統(tǒng)計圖;

(2)經(jīng)測試,全年級有4名學生體能特別好,其中有1名女生,學校準備從這4名學生中任選兩名參加運動會,請用列表或畫樹狀圖的方法求出女生被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點坐標分別為A13),B2,5),C4,2)(每個方格的邊長均為1個單位長度)

1)將ABC平移,使點A移動到點A1,請畫出A1B1C1;

2)作出ABC關于O點成中心對稱的A2B2C2,并直接寫出A2,B2C2的坐標;

3A1B1C1A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在正方形ABCD中,點EF分別為邊BCCD上的點,且∠EAF=45°,AEAF分別交對角線BD于點M、N,則下列結論正確的是_____.

①∠BAE+DAF=45°;②∠AEB=AEF=ANM;③BM+DN=MN;④BE+DF=EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,AB6,BC8,則這個三角形的內切圓的半徑是( )

A.5B.2C.52D.21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠ABC60°,BC4cm,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿著ABA的方向運動,設E點的運動時間為t秒(0t12),連接DE,當△BDE是直角三角形時,t的值為( 。

A.45B.47C.457D.479

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是△ABC的重心,過PAB的平行線DE,分別交AC于點D,BC于點E,DF//BC,AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AB4,BC8,∠ABC60°.點P是邊BC上一動點,作PAB的外接圓⊙OBDE

1)如圖1,當PB3時,求PA的長以及⊙O的半徑;

2)如圖2,當∠APB2PBE時,求證:AE平分∠PAD;

3)當AEABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°AC6,AB10.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MNAB于點D,交BC于點E.若將BDE沿直線MN翻折得BDE,使BDEABC落在同一平面內,連接BE、BC,則BCE的周長為_____

查看答案和解析>>

同步練習冊答案