【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:△AFD∽△CFE.
科目:初中數(shù)學 來源: 題型:
【題目】為了解九年級學生的體能狀況,從我縣某校九年級學生中隨機抽取部分學生進行八百米跑體能測試,測試結果分為A、B、C、D四個等級,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題;
(1)求本次測試共調查了多少名學生?并在答題卡上補全條形統(tǒng)計圖;
(2)經(jīng)測試,全年級有4名學生體能特別好,其中有1名女生,學校準備從這4名學生中任選兩名參加運動會,請用列表或畫樹狀圖的方法求出女生被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,3),B(2,5),C(4,2)(每個方格的邊長均為1個單位長度)
(1)將△ABC平移,使點A移動到點A1,請畫出△A1B1C1;
(2)作出△ABC關于O點成中心對稱的△A2B2C2,并直接寫出A2,B2,C2的坐標;
(3)△A1B1C1與△A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在正方形ABCD中,點E、F分別為邊BC與CD上的點,且∠EAF=45°,AE與AF分別交對角線BD于點M、N,則下列結論正確的是_____.
①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為( 。
A.4或5B.4或7C.4或5或7D.4或7或9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點P是△ABC的重心,過P作AB的平行線DE,分別交AC于點D,交BC于點E,作DF//BC,交AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.
(1)如圖1,當PB=3時,求PA的長以及⊙O的半徑;
(2)如圖2,當∠APB=2∠PBE時,求證:AE平分∠PAD;
(3)當AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6,AB=10.現(xiàn)分別以點A、點B為圓心,以大于AB相同的長為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若將△BDE沿直線MN翻折得△B′DE,使△B′DE與△ABC落在同一平面內,連接B′E、B′C,則△B′CE的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com