【題目】已知在平面直角坐標系中,點,以線段為直徑作圓,圓心為,直線于點,連接.

1)求證:直線的切線;

2)點軸上任意一動點,連接于點,連接

①當時,求所有點的坐標 (直接寫出);

②求的最大值.

【答案】1)見解析;(2)①,;② 的最大值為.

【解析】

1)連接,證明∠EDO=90°即可;

2)①分位于位于的延長線上結合相似三角形進行求解即可;

②作于點,證明,得,從而得解.

1)證明:連接,則:

為直徑

即:

∴直線的切線.

2)①如圖1,當位于上時:

∴設,則

,解得:

如圖2,當位于的延長線上時:

∴設,則

解得:

②如圖,作于點,

是直徑

半徑

的最大值為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在O中,弦ABCD相交于點F,∠BCD68°,∠CFA108°,求∠ADC的度數(shù).

2)如圖2,在正方形ABCD中,點ECD上一點(DECE),連接AE,并過點EAE的垂線交BC于點F,若AB9,BF7,求DE長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣1,0),B3,0),點C三點.

1)試求拋物線的解析式;

2)點D2,m)在第一象限的拋物線上,連接BCBD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;

3)點N在拋物線的對稱軸上,點M在拋物線上,當以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母AB,C依次表示這三首歌曲).比賽時,將A,BC這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.

1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

2)試用畫樹狀圖或列表的方法表示所有可能的結果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小華同學設計的作三角形的高線的尺規(guī)作圖的過程.

已知:如圖1,ABC

求作:AB邊上的高線.

作法:如圖2,

①分別以A,C為圓心,大于

為半徑作弧,兩弧分別交于點D,E;

作直線DE,交AC于點F;

以點F為圓心,FA長為半徑作圓,交AB的延長線于點M

連接CM

CM 為所求AB邊上的高線.

根據(jù)上述作圖過程,回答問題:

1)用直尺和圓規(guī),補全圖2中的圖形;

2)完成下面的證明:

證明:連接DA,DC,EA,EC,

∵由作圖可知DA=DC =EA=EC,

DE是線段AC的垂直平分線.

FA=FC

AC是⊙F的直徑.

∴∠AMC=______°___________________________________)(填依據(jù)),

CMAB

CM就是AB邊上的高線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,根據(jù)圖象解答下列問題:

1)寫出方程的兩個根;

2)若方程有兩個不相等的實數(shù)根,求的取值范圍;

3)若拋物線與直線相交于,兩點,寫出拋物線在直線下方時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請認真閱讀下面的數(shù)學小探究,完成所提出的問題

1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°BC=3,將邊 AB繞點B順時針旋轉90°得到線段BD,連接CD,過點DBC邊上的高DE,則DEBC的數(shù)量關系是 BCD的面積為

2)探究2,如圖②,在一般的RtABC中,∠ACB=90°,BC=,將邊AB繞點B順時針旋轉90°得到線段BD,連接CD,請用含的式子表示△BCD的面積,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點E,F分別在BC,CD上,且CECF,

1)求證△ABE≌△ADF

2)若∠B50°,AEBC,求∠AEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點PAB延長線上一點,PC切⊙O于點C,過點BBEPC交⊙O于點E,連接CECB

1)試判斷BCE的形狀,并說明理由;

2)過點CCDAB于點DBE于點F,若cosP,CF5,求AB的長.

查看答案和解析>>

同步練習冊答案