【題目】點(diǎn)P,Q都是直線l外的點(diǎn),下列說法正確的是( 。
A.連接PQ,則PQ一定與直線l垂直
B.連接PQ,則PQ一定與直線l平行
C.連接PQ,則PQ一定與直線l相交
D.過點(diǎn)P只能畫一條直線與直線l平行
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6,CB=8,點(diǎn)P與點(diǎn)Q分別是AB、CB邊上的動點(diǎn),點(diǎn)P與點(diǎn)Q同時出發(fā),點(diǎn)P以每秒2個單位長度的速度從點(diǎn)A→點(diǎn)B運(yùn)動,點(diǎn)Q以每秒1個單位長度的速度從點(diǎn)C→點(diǎn)B運(yùn)動.當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動.(設(shè)運(yùn)動時間為t秒)
(1)如果存在某一時刻恰好使QB=2PB,求出此時t的值;
(2)在(1)的條件下,求圖中陰影部分的面積(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,若α=45°,點(diǎn)E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月7日央視網(wǎng)消息:今年的政府工作報告指出,全年將減輕企業(yè)稅收和社保繳費(fèi)負(fù)擔(dān)近2萬億元.這個2萬億元的原數(shù)是2000000000000元,用科學(xué)計數(shù)法表示這個數(shù)是________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市射擊隊為了從甲、 乙 兩名運(yùn)動員中選出一名運(yùn)動員參加省運(yùn)動會比賽,組織了選拔測試,兩人分別進(jìn)行了五次射擊,成績(單位:環(huán))如下:
甲 | 10 | 9 | 8 | 9 | 9 |
乙 | 10 | 8 | 9 | 8 | 10 |
你認(rèn)為應(yīng)選擇哪位運(yùn)動員參加省運(yùn)動會比賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-(x-2)2+3,下列說法正確的是( )
A. 開口向下,頂點(diǎn)坐標(biāo)(2,3)B. 開口向上,頂點(diǎn)坐標(biāo)(2,-3)
C. 開口向下,頂點(diǎn)坐標(biāo)(-2,3)D. 開口向上,頂點(diǎn)坐標(biāo)(-2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F
(1)如圖1,若∠ACD=60゜,則∠AFB= ;
(2)如圖2,若∠ACD=α,則∠AFB= (用含α的式子表示);
(3)將圖2中的△ACD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖3.試探究∠AFB與α的數(shù)量關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=+mx﹣2m﹣2與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與y軸交于點(diǎn)C,
(1)當(dāng)m=1時,求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)拋物線上有一點(diǎn)D(﹣1,n),若△ACD的面積為5,求m的值;
(3)P為拋物線上A、B之間一點(diǎn)(不包括A、B),PM⊥x軸于點(diǎn)M,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com