【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

(1)在圖中畫出△A1B1C1;

(2)點A1,B1,C1的坐標分別為   、   、   

(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

【答案】(1)畫圖見解析;(2)(0,4),(﹣1,1),(3,1);(3)點P的坐標為(0,1)或(0,﹣5).

【解析】試題分析:(1)按要求進行平移即可;

(2)根據(jù)平移的圖形,觀察即可得點的坐標;

(3)兩三角形面積相等,則相對于BC,兩三角形高相等設P(0,y),由三角形的面積公式得|y-(-2)|=3 ,從而可得點P的坐標.

試題解析:(1)如圖所示:

(2)(0,4),(﹣1,1),(3,1);

(3)設P(0,y),由三角形的面積公式得:S△PBC= ×4×|y-(-2)|=×4×3=6,

解得|y-(-2)|=3,

∴點P的坐標為(0,1)或(0,﹣5).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到△ABC,圖中標出了點B的對應點B

(1) 補全△ABC

(2) 根據(jù)下列條件,利用網(wǎng)格點和直尺畫圖:

畫出△ABC中:

AC邊上的中線BD

AC邊上的高線BE;

(3)寫出△ABD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當指針指在邊界線上時視為無效,重轉(zhuǎn)).

(1)小夏說:“如果兩個指針所指區(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?

(2)請你對小夏和小秋玩的這種游戲設計一種公平的游戲規(guī)則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于 x 的不等式 x-a<1 的解集為 x<2,則 a 的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程組:(1); (2) ;

(3); (4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,相交于點,上一點,上一點,且。

(1)求證:

(2)若,求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人因需要經(jīng)常去復印資料,甲復印社按A4紙每102元計費,乙復印社則按A4紙每101元計費,但需按月付一定數(shù)額的承包費. 兩復印社每月收費情況如圖所示,根據(jù)圖中提供的信息解答下列問題:

1)乙復印社要求客戶每月支付的承包費是 .

2)當每月復印 頁時,兩復印社實際收費相同.

3)如果每月復印頁在250頁左右時,應選擇哪一個復印社?請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是( 。

A.鄰補角相等

B.同位角相等

C.兩直線平行,同旁內(nèi)角相等

D.對頂角相等

查看答案和解析>>

同步練習冊答案