【題目】在水果銷售旺季,某水果店購進一優(yōu)質水果,進價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
【答案】(1)當天該水果的銷售量為33千克;(2)如果某天銷售這種水果獲利150元,該天水果的售價為25元.
【解析】
(1)根據(jù)表格內的數(shù)據(jù),利用待定系數(shù)法可求出y與x之間的函數(shù)關系式,再代入x=23.5即可求出結論;
(2)根據(jù)總利潤每千克利潤銷售數(shù)量,即可得出關于x的一元二次方程,解之取其較小值即可得出結論.
(1)設y與x之間的函數(shù)關系式為y=kx+b,
將(22.6,34.8)、(24,32)代入y=kx+b,
,解得:,
∴y與x之間的函數(shù)關系式為y=﹣2x+80.
當x=23.5時,y=﹣2x+80=33.
答:當天該水果的銷售量為33千克.
(2)根據(jù)題意得:(x﹣20)(﹣2x+80)=150,
解得:x1=35,x2=25.
∵20≤x≤32,
∴x=25.
答:如果某天銷售這種水果獲利150元,那么該天水果的售價為25元.
科目:初中數(shù)學 來源: 題型:
【題目】2019年2月14日,備受關注的《成都市中小學課后服務實施意見》正式出臺.某區(qū)為了解“家長更希望如何安排孩子放學后的時間”,對該區(qū)七年級部分家長進行了一次問卷調查(每位同學只選擇一位家長參與調查),將調查結果(.回家,家人陪伴;.學校課后延時服務;.校外培訓機構;.社會托管班)繪制成以下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次調查的家長總人數(shù)為 ;
(2)補全條形統(tǒng)計圖:扇形統(tǒng)計圖中,類所對應的圓心角為 度;
(3)若該區(qū)共有七年級學生人,則愿意參加“學生課后延時服務”的人數(shù)大概是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結EF、BF,下列結論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結論的個數(shù)共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學對八年級部分學生進行了隨機問卷調查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖,請結合圖中信息解答以下問題:
(1)試問本次問卷調查一共調查了多少名學生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學生,請你估計全年級可能有多少名學生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調查回答“不愿意”的同學中隨機選取2名同學來談談他們的想法,而本次調查回答“不愿意”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程
(1)求證:方程總有兩個不相等的實數(shù)根。
(2)m為何整數(shù)時,此方程的兩個根都是正整數(shù)?
(3)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根,第三邊BC的長為5,當△ABC是等腰三角形時,求m的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副三角板疊在一起,使直角頂點重合于點O,則∠AOB+∠DOC=()度。
A. 小于180 B. 大于180 C. 等于180 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,DE⊥AC,垂足為點E,∠AGF=∠ABC,∠BFG+∠BDE=180°,
求證:BF⊥AC.
請完成下面的證明的過程,并在括號內注明理由.
證明:∵∠AGF=∠ABC(已知)
∴FG∥ ( )
∴∠BFG=∠FBC( )
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°( )
∴BF∥DE( )
∴∠BFA= (兩直線平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°( )
∴∠BFA=90°(等量代換)
∴BF⊥AC(垂直的定義)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A1的坐標為(2,0),過點A1作x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進行下去,則的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com