【題目】如圖,在矩形ABCD中,AE平分∠BAD,交BC于E,過E做EF⊥AD于F,連接BF交AE于P,連接PD.

(1)求證:四邊形ABEF是正方形;
(2)如果AB=6,AD=8,求tan∠ADP的值.

【答案】
(1)證明:∵四邊形ABCD是矩形,

∴∠FAB=∠ABE=90°,AF∥BE,

∵EF⊥AD,

∴∠FAB=∠ABE=∠AFE=90°,

∴四邊形ABEF是矩形,

∵AE平分∠BAD,AF∥BE,

∴∠FAE=∠BAE=∠AEB,

∴AB=BE,

∴四邊形ABEF是正方形;


(2)解:過點(diǎn)P作PH⊥AD于H,如圖所示:

∵四邊形ABEF是正方形,

∴BP=PF,BA⊥AD,∠PAF=45°,

∴AB∥PH,

∵AB=6,

∴AH=PH=3,

∵AD=8,

∴DH=AD﹣AH=8﹣3=5,

在Rt△PHD中,∠PHD=90°.

∴tan∠ADP= =


【解析】(1)先根據(jù)有一角為直角的平行四邊形是矩形證四邊形ABEF是矩形,然后再證AB=BE,可得證;
(2)過點(diǎn)P作PH⊥AD于H,根據(jù)四邊形ABEF是正方形和已知,易求出DH、PH的長(zhǎng),再在在Rt△PHD中,利用三角函數(shù)的定義可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個(gè)動(dòng)點(diǎn),FAB邊上一點(diǎn),∠AEF=30°.設(shè)DE=x,圖中某條線段長(zhǎng)為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解本校中考體育備考情況,隨機(jī)抽去九年級(jí)部分學(xué)生進(jìn)行了一次測(cè)試(滿分60分,成績(jī)均記為整數(shù)分)并按測(cè)試成績(jī)(單位:分)分成四類:A類(54≤a≤60),B類(48≤a≤53),C類(36≤a≤47),D類(a≤35)繪制出如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖匯總,表示成績(jī)類別為“C”的扇形所對(duì)應(yīng)的圓心角是度;
(3)該校準(zhǔn)備召開體育考經(jīng)驗(yàn)交流會(huì),已知A類學(xué)生中有4人滿分(男生女生各有2人),現(xiàn)計(jì)劃從這4人中隨機(jī)選出2名學(xué)生進(jìn)行經(jīng)驗(yàn)介紹,請(qǐng)用樹狀圖或列表法求所抽到的2,名學(xué)生恰好是一男一女的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)長(zhǎng)為、寬為的長(zhǎng)方形,沿中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)回形正方形(如圖).

(1)如圖中的陰影部分面積為: ;(、的代數(shù)式表示)

(2)觀察如圖,請(qǐng)你寫出、、之間的等量關(guān)系是

(3)根據(jù)(2)中的結(jié)論,若,則

(4)實(shí)際上通過計(jì)算圖形的陰影可以探求相應(yīng)的等式,如圖,請(qǐng)你寫出這個(gè)等式

(5)如圖,線段 (其中為正數(shù)),點(diǎn)線在段上,在線段同側(cè)作正方形及正方形,連接,,得到.當(dāng)時(shí),的面積記為;當(dāng)時(shí),的面積記為;當(dāng)時(shí),的面積記為;當(dāng)時(shí),的面積記為,則 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F(xiàn),與雙曲線y=﹣ (x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn),直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了擴(kuò)大生產(chǎn),決定購買6臺(tái)機(jī)器用于生產(chǎn)零件,現(xiàn)有甲、乙兩種機(jī)器可供選擇.其中甲型機(jī)器每日生產(chǎn)零件106個(gè),乙型機(jī)器每日生產(chǎn)零件60個(gè),經(jīng)調(diào)査,購買3臺(tái)甲型機(jī)器和2臺(tái)乙型機(jī)器共需要31萬元,購買一臺(tái)甲型機(jī)器比購買一臺(tái)乙型機(jī)器多2萬元.

1)求甲、乙兩種機(jī)器每臺(tái)各多少萬元?

2)如果工廠購買機(jī)器的預(yù)算資金不超過34萬元,那么你認(rèn)為該工廠有哪幾種購買方案?

3)在(2)的條件下,如果要求該工廠購進(jìn)的6臺(tái)機(jī)器的日產(chǎn)量能力不能低于400個(gè),那么為了節(jié)約資金.應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)AB,C均在格點(diǎn)上.

(1)請(qǐng)值接寫出點(diǎn)AB,C的坐標(biāo).

(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B,CD,A,并求出四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,路燈距地面8米,身高1.6米的小明從距離燈底(點(diǎn)O)20米的點(diǎn)A處,沿AO所在直線行走12米到達(dá)點(diǎn)B時(shí),小明身影長(zhǎng)度( )

A.變長(zhǎng)2.5米
B.變短2米
C.變短2.5米
D.變短3米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,把∠α=60°的一個(gè)單獨(dú)的菱形稱作一個(gè)基本圖形,將此基本圖形不斷的復(fù)制并平移,使得下一個(gè)菱形的一個(gè)頂點(diǎn)與前一個(gè)菱形的中心重合,這樣得到圖②,圖③,…

(1)觀察圖形并完成表格:

圖形名稱

基本圖形的個(gè)數(shù)

菱形的個(gè)數(shù)

圖①

1

1

圖②

2

3

圖③

3

7

圖④

4

猜想:在圖n中,菱形的個(gè)數(shù)為 [用含有n(n≥3)的代數(shù)式表示];
(2)如圖,將圖n放在直角坐標(biāo)系中,設(shè)其中第一個(gè)基本圖形的中心O1的坐標(biāo)為(x1 , 1),則x1=;第2017個(gè)基本圖形的中心O2017的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案