【題目】在創(chuàng)客教育理念的指引下,國內(nèi)很多學(xué)校都紛紛建立創(chuàng)客實(shí)踐空及創(chuàng)客空間,致力于從小培養(yǎng)孩子的創(chuàng)新精神和創(chuàng)造能力,某校開設(shè)了“3D”打印、數(shù)學(xué)編程、智能機(jī)器人、陶藝制作“四門創(chuàng)客課程記為A、B、C、D,為了解學(xué)生對這四門創(chuàng)客課程的喜愛情況,數(shù)學(xué)興趣小組對全校學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成兩幅均不完整的統(tǒng)計圖表:
請根據(jù)圖表中提供的信息回答下列問題
(1)統(tǒng)計表中的a= ,b= ;
(2)“陶藝制作”對應(yīng)扇形的圓心角為 ;
(3)學(xué)校為開設(shè)這四門課程,需要對參加“3D”打印課程每個人投資200元,預(yù)計A、B、C、D四門課程每人投資比為4:3:6:5,求學(xué)校開設(shè)創(chuàng)客課程需為學(xué)生人均投資多少錢?
【答案】(1)80,0.2;(2)36°;(3)212.5元
【解析】
(1)根據(jù)“3D”打印的頻數(shù)和頻率可以求得a的值,然后根據(jù)b對應(yīng)的頻數(shù)即可求得b的值;
(2)根據(jù)頻數(shù)分布表中的數(shù)據(jù)可以求得“陶藝制作”對應(yīng)扇形的圓心角的度數(shù);
(3)根據(jù)題意和題目中的數(shù)據(jù),可以求得學(xué)校為開設(shè)創(chuàng)客課程,需為學(xué)生人均投入多少錢.
解:(1)a=36÷0.45=80,
b=16÷80=0.2,
故答案為:80,0.2;
(2)“陶藝制作”對應(yīng)扇形的圓心角為:360°×=36°,
故答案為:36°;
(3)∵每生A、B、C、D四科投資比為4:3:6:5,“3D打印課程每人投資200元,
∴每生A、B、C、D四科投資分別為:200元、150元、300元、250元,(200×36)+150×(80×0.25)+300×16+250×8=212.5(元),
即學(xué)校為開設(shè)創(chuàng)客課程,需為學(xué)生人均投入212.5元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學(xué)計劃對面積為運(yùn)動場進(jìn)行塑膠改造.經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨(dú)立完成面積為的改造時,甲隊比乙隊少用天.
(1)求甲、乙兩工程隊每天能完成塑膠改造的面積;
(2)設(shè)甲工程隊施工天,乙工程隊施工天,剛好完成改造任務(wù),求與的函數(shù)解析式;
(3)若甲隊每天改造費(fèi)用是萬元,乙隊每天改造費(fèi)用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費(fèi)用最低?并求出最低的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點(diǎn)D在邊BC上,BD=2CD(圖4).把△ABC繞著點(diǎn)D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)在和時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn)A,求m和k的值;
(3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移個單位后得到的圖象記為C,同時將(2)中得到的直線向上平移n個單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時,n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時,求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;
(3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1的圖象與x軸交A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3)點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線C1的解析式;
(2)將拋物線C1關(guān)于直線x=1對稱后的拋物線記為C2,將拋物線C1關(guān)于點(diǎn)B對稱后的拋物線記為C3,點(diǎn)E為拋物線C3的頂點(diǎn),在拋物線C2的對稱軸上是否存在點(diǎn)F,使得△BEF為等腰三角形?若存在請求出點(diǎn)F的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項測試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績由筆試面試、實(shí)習(xí)依次按3:2:5的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對他們的兩項成績分別進(jìn)行了整理和分析.下面給出了部分信息:
①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x<70,B組:70≤x<80,C組:80≤x<90,D組:90≤x<100;并繪制了如下的筆試成績頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,81,82,83,83,84,84,85,86,88,88,88,89.
②這些大學(xué)生的筆試、面試成績的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 最高分 | |
筆試成績 | 81 | m | 92 | 97 |
面試成績 | 80.5 | 84 | 86 | 92 |
根據(jù)以上信息,回答下列問題:
(1)這批大學(xué)生中筆試成績不低于88分的人數(shù)所占百分比為 .
(2)m= 分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績都是83分,那么該同學(xué)成績排名靠前的是 成績,理由是 .
(3)乙同學(xué)也參加了本次招聘,筆試成績雖不是最高分,但也不錯,分?jǐn)?shù)在D組;面試成績?yōu)?/span>88分,實(shí)習(xí)成績?yōu)?/span>80分由表格中的統(tǒng)計數(shù)據(jù)可知乙同學(xué)的筆試成績?yōu)?/span> 分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請通過計算說明,該同學(xué)最終能否被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)C坐標(biāo)為(0,4).點(diǎn)P從點(diǎn)O出發(fā),沿OA以每秒1個單位長度的速度向點(diǎn)A運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā),沿AB以每秒2個單位長度的速度向點(diǎn)B運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)A重合時運(yùn)動停止.設(shè)運(yùn)動時間為t秒.
(1)當(dāng)△CBQ與△PAQ相似時,求出t的值;
(2)當(dāng)t=1時,拋物線y=2x2+bx+c經(jīng)過P,Q兩點(diǎn),與y軸交于點(diǎn)M,在該拋物線上找點(diǎn)D,使∠MQD=∠MPQ,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B分別在函數(shù)y=(k1>0)與函數(shù)y=(k2<0)的圖象上,線段AB的中點(diǎn)M在x軸上,△AOB的面積為4,則k1﹣k2的值為( 。
A.2B.4C.6D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com