(2012•通州區(qū)一模)小明在學(xué)習(xí)軸對(duì)稱的時(shí)候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點(diǎn),請(qǐng)你在直線l上確定一點(diǎn)P,使得PA+PB的值最。∶魍ㄟ^(guò)獨(dú)立思考,很快得出了解決這個(gè)問(wèn)題的正確方法,他的作法是這樣的:
①作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′.
②連接A′B,交直線l于點(diǎn)P.則點(diǎn)P為所求.請(qǐng)你參考小明的作法解決下列問(wèn)題:
(1)如圖1,在△ABC中,點(diǎn)D、E分別是AB、AC邊的中點(diǎn),BC=6,BC邊上的高為4,請(qǐng)你在BC邊上確定一點(diǎn)P,使得△PDE的周長(zhǎng)最小.
①在圖1中作出點(diǎn)P.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)
②請(qǐng)直接寫出△PDE周長(zhǎng)的最小值
8
8
.
(2)如圖2在矩形ABCD中,AB=4,BC=6,G為邊AD的中點(diǎn),若E、F為邊AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)E在點(diǎn)F左側(cè),且EF=1,當(dāng)四邊形CGEF的周長(zhǎng)最小時(shí),請(qǐng)你在圖2中確定點(diǎn)E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長(zhǎng)的最小值
.